Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206190611> ?p ?o ?g. }
- W4206190611 endingPage "361" @default.
- W4206190611 startingPage "345" @default.
- W4206190611 abstract "<abstract> <p>Algorithmic trading is one of the most concerned directions in financial applications. Compared with traditional trading strategies, algorithmic trading applications perform forecasting and arbitrage with higher efficiency and more stable performance. Numerous studies on algorithmic trading models using deep learning have been conducted to perform trading forecasting and analysis. In this article, we firstly summarize several deep learning methods that have shown good performance in algorithmic trading applications, and briefly introduce some applications of deep learning in algorithmic trading. We then try to provide the latest snapshot application for algorithmic trading based on deep learning technology, and show the different implementations of the developed algorithmic trading model. Finally, some possible research issues are suggested in the future. The prime objectives of this paper are to provide a comprehensive research progress of deep learning applications in algorithmic trading, and benefit for subsequent research of computer program trading systems.</p> </abstract>" @default.
- W4206190611 created "2022-01-26" @default.
- W4206190611 creator A5042348933 @default.
- W4206190611 creator A5050532516 @default.
- W4206190611 creator A9999999999 @default.
- W4206190611 date "2021-01-01" @default.
- W4206190611 modified "2023-10-02" @default.
- W4206190611 title "Survey on the application of deep learning in algorithmic trading" @default.
- W4206190611 cites W179875071 @default.
- W4206190611 cites W1946342668 @default.
- W4206190611 cites W2064675550 @default.
- W4206190611 cites W2074229969 @default.
- W4206190611 cites W2100495367 @default.
- W4206190611 cites W2103496339 @default.
- W4206190611 cites W2123619661 @default.
- W4206190611 cites W2130325614 @default.
- W4206190611 cites W2209610041 @default.
- W4206190611 cites W2296599285 @default.
- W4206190611 cites W2342352817 @default.
- W4206190611 cites W2344786740 @default.
- W4206190611 cites W2566564364 @default.
- W4206190611 cites W2734986640 @default.
- W4206190611 cites W2735895797 @default.
- W4206190611 cites W2754191969 @default.
- W4206190611 cites W2762958083 @default.
- W4206190611 cites W2766243861 @default.
- W4206190611 cites W2767299446 @default.
- W4206190611 cites W2774513877 @default.
- W4206190611 cites W2785770483 @default.
- W4206190611 cites W2785939461 @default.
- W4206190611 cites W2793147161 @default.
- W4206190611 cites W2800569739 @default.
- W4206190611 cites W2806361578 @default.
- W4206190611 cites W2865675487 @default.
- W4206190611 cites W2889415981 @default.
- W4206190611 cites W2891295326 @default.
- W4206190611 cites W2891950817 @default.
- W4206190611 cites W2899992493 @default.
- W4206190611 cites W2911608625 @default.
- W4206190611 cites W2913655741 @default.
- W4206190611 cites W2914419771 @default.
- W4206190611 cites W2919115771 @default.
- W4206190611 cites W2922995703 @default.
- W4206190611 cites W2936114410 @default.
- W4206190611 cites W2938394653 @default.
- W4206190611 cites W2963398784 @default.
- W4206190611 cites W2963751193 @default.
- W4206190611 cites W2966021938 @default.
- W4206190611 cites W2976581604 @default.
- W4206190611 cites W2977590557 @default.
- W4206190611 cites W2988724480 @default.
- W4206190611 cites W3000776319 @default.
- W4206190611 cites W3022746105 @default.
- W4206190611 cites W3038584219 @default.
- W4206190611 cites W3110420963 @default.
- W4206190611 cites W3123095408 @default.
- W4206190611 cites W3124849400 @default.
- W4206190611 cites W3126577088 @default.
- W4206190611 cites W4249906708 @default.
- W4206190611 doi "https://doi.org/10.3934/dsfe.2021019" @default.
- W4206190611 hasPublicationYear "2021" @default.
- W4206190611 type Work @default.
- W4206190611 citedByCount "4" @default.
- W4206190611 countsByYear W42061906112022 @default.
- W4206190611 countsByYear W42061906112023 @default.
- W4206190611 crossrefType "journal-article" @default.
- W4206190611 hasAuthorship W4206190611A5042348933 @default.
- W4206190611 hasAuthorship W4206190611A5050532516 @default.
- W4206190611 hasAuthorship W4206190611A9999999999 @default.
- W4206190611 hasBestOaLocation W42061906111 @default.
- W4206190611 hasConcept C106159729 @default.
- W4206190611 hasConcept C108583219 @default.
- W4206190611 hasConcept C11413529 @default.
- W4206190611 hasConcept C115903868 @default.
- W4206190611 hasConcept C11906137 @default.
- W4206190611 hasConcept C119857082 @default.
- W4206190611 hasConcept C131562839 @default.
- W4206190611 hasConcept C154945302 @default.
- W4206190611 hasConcept C158876240 @default.
- W4206190611 hasConcept C162324750 @default.
- W4206190611 hasConcept C172428447 @default.
- W4206190611 hasConcept C179262372 @default.
- W4206190611 hasConcept C24683644 @default.
- W4206190611 hasConcept C26713055 @default.
- W4206190611 hasConcept C41008148 @default.
- W4206190611 hasConcept C55282118 @default.
- W4206190611 hasConcept C77088390 @default.
- W4206190611 hasConcept C78508483 @default.
- W4206190611 hasConceptScore W4206190611C106159729 @default.
- W4206190611 hasConceptScore W4206190611C108583219 @default.
- W4206190611 hasConceptScore W4206190611C11413529 @default.
- W4206190611 hasConceptScore W4206190611C115903868 @default.
- W4206190611 hasConceptScore W4206190611C11906137 @default.
- W4206190611 hasConceptScore W4206190611C119857082 @default.
- W4206190611 hasConceptScore W4206190611C131562839 @default.
- W4206190611 hasConceptScore W4206190611C154945302 @default.
- W4206190611 hasConceptScore W4206190611C158876240 @default.
- W4206190611 hasConceptScore W4206190611C162324750 @default.