Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206200737> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4206200737 abstract "<p>When applied to a sequence of repeated surveys, the traditional sample survey estimators of means or totals for one time period only, fail to take advantage of any time series structure. Such structure may result from correlation between successive responses for resampled individuals, or from time series properties in the parameters of interest. Historically, the initial published papers on time series improvement of repeated sample survey estimates allowed only the first possibility, treating the sum over the population of the individual responses as fixed; individual responses were seen as having stochastic properties only with respect to the sampling scheme. The alternative and later development allowed that both individual responses and their sum have stochastic properties with respect to a superpopulation from which the population of individual responses are drawn. Superpopulations allowed the application of mainstream time series techniques, including signal extraction and stochastic least squares, to repeated sample survey data. These developments in their historical perspective are the topic of Chapter 1. Superpopulation models may also be applied to sample surveys from a single time period, and superpopulation and design properties of the one period linear non-homogeneous sample survey estimator form the topic of Chapter 2; this estimator is sufficiently general to subsume almost all single period non-informative sample survey estimators, and Chapter 2 allows systematisation of a wide range of previously disparate results. This linear estimator may also be extended beyond one time period to include the known estimators for repeated surveys, and this topic, together with a consideration of the effects of data agqregation on non-stochastic and stochastic least squares, is the subject of Chapter 3. Given the central role of the general linear model, and the time series nature of repeated surveys, projection and parameter updating formulae for linear models should form an integral part of repeated survey analysis. The correlation of sample survey errors however, invalidates the formulae appropriate to the known iid error case, and Chapters 4 and 5 develop the general formulae to allow correlated error structure. Chapter 4 considers parameter vectors of fixed length, as for example, for polynomial models, and provides formulae for estimating the length of the parameter vector, and for calculating independent recursive residuals and cusums when further data are added to the model. Chapter 5 considers updating and projection formulae in a wider context, and allows that the parameter vector may be stochastic or non-stochastic and that its length may increase with additional data; it consequently provides a general extension of the Kalman filter to the case of coloured noise over time. The paucity of suitable data has limited data analysis to that contained in Chapter 6, where a simulation study and an analysis of medical data gauge the efficacy of polynomial models in time with multiple observations per time point and autocorrelated errors. The formulae of Chapter 4 allow testing for the constancy of the regression relationships over time. The appendix details SAS computer programs for fitting the polynomial models of Chapter 6.</p>" @default.
- W4206200737 created "2022-01-25" @default.
- W4206200737 creator A5007869784 @default.
- W4206200737 creator A9999999999 @default.
- W4206200737 date "2021-11-09" @default.
- W4206200737 modified "2023-10-17" @default.
- W4206200737 title "Time Series Methods and Repeated Sample Surveys" @default.
- W4206200737 doi "https://doi.org/10.26686/wgtn.16959499.v1" @default.
- W4206200737 hasPublicationYear "2021" @default.
- W4206200737 type Work @default.
- W4206200737 citedByCount "0" @default.
- W4206200737 crossrefType "dissertation" @default.
- W4206200737 hasAuthorship W4206200737A5007869784 @default.
- W4206200737 hasAuthorship W4206200737A9999999999 @default.
- W4206200737 hasBestOaLocation W42062007371 @default.
- W4206200737 hasConcept C105795698 @default.
- W4206200737 hasConcept C106131492 @default.
- W4206200737 hasConcept C127413603 @default.
- W4206200737 hasConcept C129848803 @default.
- W4206200737 hasConcept C140779682 @default.
- W4206200737 hasConcept C143724316 @default.
- W4206200737 hasConcept C144024400 @default.
- W4206200737 hasConcept C146978453 @default.
- W4206200737 hasConcept C149782125 @default.
- W4206200737 hasConcept C149923435 @default.
- W4206200737 hasConcept C151730666 @default.
- W4206200737 hasConcept C185429906 @default.
- W4206200737 hasConcept C185592680 @default.
- W4206200737 hasConcept C198531522 @default.
- W4206200737 hasConcept C204323151 @default.
- W4206200737 hasConcept C2908647359 @default.
- W4206200737 hasConcept C31972630 @default.
- W4206200737 hasConcept C33923547 @default.
- W4206200737 hasConcept C41008148 @default.
- W4206200737 hasConcept C43617362 @default.
- W4206200737 hasConcept C5733905 @default.
- W4206200737 hasConcept C86803240 @default.
- W4206200737 hasConceptScore W4206200737C105795698 @default.
- W4206200737 hasConceptScore W4206200737C106131492 @default.
- W4206200737 hasConceptScore W4206200737C127413603 @default.
- W4206200737 hasConceptScore W4206200737C129848803 @default.
- W4206200737 hasConceptScore W4206200737C140779682 @default.
- W4206200737 hasConceptScore W4206200737C143724316 @default.
- W4206200737 hasConceptScore W4206200737C144024400 @default.
- W4206200737 hasConceptScore W4206200737C146978453 @default.
- W4206200737 hasConceptScore W4206200737C149782125 @default.
- W4206200737 hasConceptScore W4206200737C149923435 @default.
- W4206200737 hasConceptScore W4206200737C151730666 @default.
- W4206200737 hasConceptScore W4206200737C185429906 @default.
- W4206200737 hasConceptScore W4206200737C185592680 @default.
- W4206200737 hasConceptScore W4206200737C198531522 @default.
- W4206200737 hasConceptScore W4206200737C204323151 @default.
- W4206200737 hasConceptScore W4206200737C2908647359 @default.
- W4206200737 hasConceptScore W4206200737C31972630 @default.
- W4206200737 hasConceptScore W4206200737C33923547 @default.
- W4206200737 hasConceptScore W4206200737C41008148 @default.
- W4206200737 hasConceptScore W4206200737C43617362 @default.
- W4206200737 hasConceptScore W4206200737C5733905 @default.
- W4206200737 hasConceptScore W4206200737C86803240 @default.
- W4206200737 hasLocation W42062007371 @default.
- W4206200737 hasLocation W42062007372 @default.
- W4206200737 hasOpenAccess W4206200737 @default.
- W4206200737 hasPrimaryLocation W42062007371 @default.
- W4206200737 hasRelatedWork W104619080 @default.
- W4206200737 hasRelatedWork W1993731342 @default.
- W4206200737 hasRelatedWork W2283070068 @default.
- W4206200737 hasRelatedWork W2350317495 @default.
- W4206200737 hasRelatedWork W2922240306 @default.
- W4206200737 hasRelatedWork W3126132007 @default.
- W4206200737 hasRelatedWork W3207678906 @default.
- W4206200737 hasRelatedWork W4230755026 @default.
- W4206200737 hasRelatedWork W4282591073 @default.
- W4206200737 hasRelatedWork W4310475903 @default.
- W4206200737 isParatext "false" @default.
- W4206200737 isRetracted "false" @default.
- W4206200737 workType "dissertation" @default.