Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206210456> ?p ?o ?g. }
- W4206210456 endingPage "3711" @default.
- W4206210456 startingPage "3700" @default.
- W4206210456 abstract "Due to high biological adaptability and flexibility, pneumatic artificial muscle (PAM) systems are widely employed in exoskeleton robots to accomplish rehabilitation training with repetitive motions. However, some intrinsic characteristics of PAMs and inevitable practical factors, e.g., high nonlinearity, hysteresis, uncertain dynamics, and limited working space, may badly degrade tracking performance and safety. Hence, this paper designs a new learning-based motion controller for PAMs, to simultaneously compensate for model uncertainties, eliminate tracking errors, and satisfy preset motion constraints. Particularly, when PAMs suffer from periodically non-parametric uncertainties, the elaborately designed continuous update algorithm can repetitively learn them online to enhance tracking accuracy, without employing upper/lower bounds of unknown parts for controller design and gain selections. Meanwhile, some non-periodic uncertainties are handled by a robust term, whose value is only related to the initial states of PAMs, instead of exact upper bounds of unknown dynamics. From safety concerns, we introduce error-related saturation terms to limit initial amplitudes of control inputs within saturation constraints and avoid overlarge errors inducing overlarge acceleration. Meanwhile, the constraint-related auxiliary term is utilized to keep tracking errors within allowable ranges. To the best of our knowledge, this paper presents the first learning-based error-constrained controller for uncertain PAM-actuated exoskeleton robots, to realize high-precision tracking control and improve safety without additional gain conditions. Moreover, the asymptotic convergence of tracking errors is strictly proven by Lyapunov-based stability analysis. Finally, based on a self-built exoskeleton robot, the effectiveness of the proposed controller is verified by hardware experiments. Note to Practitioners—This work is motivated by the practical requirements of exoskeleton robots in rehabilitation training and exploration fields. Currently, PAM systems, as a kind of new flexible actuator equipment, are playing increasingly important roles in the development of exoskeleton robot control. However, uncertain (or time-varying) parameters/structures and highly nonlinear dynamics, such as creep and hysteresis, may badly increase the control difficulty of PAMs. Moreover, higher and higher tracking accuracy and safety requirements also induce urgently solved problems to practical PAM-actuated exoskeleton robots, e.g., smooth start, motion constraints, and rapid error elimination. To this end, this paper proposes a new learning-based adaptive controller, which realizes accurate tracking control for PAM-actuated exoskeleton robots by utilizing an elaborately designed repetitive learning algorithm and a robust term to handle periodic and non-periodic uncertainties, respectively. More importantly, the proposed controller simultaneously enhances transient performance of PAMs, including gradually improved tracking accuracy, effective constraints for startup acceleration and tracking errors. Additionally, it is not required to consider the upper bounds of unknown dynamics and additional gain selection conditions, which is theoretically and practically important for PAM systems. Some hardware experiments further verify the effectiveness and robustness of the suggested controller. In our future work, we intend to design more effective methods for PAMs with unmeasurable states and time-delay." @default.
- W4206210456 created "2022-01-25" @default.
- W4206210456 creator A5030402098 @default.
- W4206210456 creator A5036696237 @default.
- W4206210456 creator A5040326170 @default.
- W4206210456 creator A5044478333 @default.
- W4206210456 creator A5058644546 @default.
- W4206210456 creator A5084704870 @default.
- W4206210456 date "2022-10-01" @default.
- W4206210456 modified "2023-10-18" @default.
- W4206210456 title "Learning-Based Error-Constrained Motion Control for Pneumatic Artificial Muscle-Actuated Exoskeleton Robots With Hardware Experiments" @default.
- W4206210456 cites W1675370436 @default.
- W4206210456 cites W1964542930 @default.
- W4206210456 cites W1981190435 @default.
- W4206210456 cites W2000795873 @default.
- W4206210456 cites W2005589739 @default.
- W4206210456 cites W2038095121 @default.
- W4206210456 cites W2052766008 @default.
- W4206210456 cites W2098034501 @default.
- W4206210456 cites W2101433417 @default.
- W4206210456 cites W2108303641 @default.
- W4206210456 cites W2116355994 @default.
- W4206210456 cites W2140341964 @default.
- W4206210456 cites W2333357315 @default.
- W4206210456 cites W2464813316 @default.
- W4206210456 cites W2469063704 @default.
- W4206210456 cites W2473714901 @default.
- W4206210456 cites W2514523983 @default.
- W4206210456 cites W2562369931 @default.
- W4206210456 cites W2583278904 @default.
- W4206210456 cites W2754133402 @default.
- W4206210456 cites W2784322890 @default.
- W4206210456 cites W2795105096 @default.
- W4206210456 cites W2800984617 @default.
- W4206210456 cites W2883972132 @default.
- W4206210456 cites W2887904994 @default.
- W4206210456 cites W2889334376 @default.
- W4206210456 cites W2892748100 @default.
- W4206210456 cites W2897791698 @default.
- W4206210456 cites W2906481773 @default.
- W4206210456 cites W2912259603 @default.
- W4206210456 cites W2913466073 @default.
- W4206210456 cites W2913739612 @default.
- W4206210456 cites W2939067712 @default.
- W4206210456 cites W2948423092 @default.
- W4206210456 cites W2952761691 @default.
- W4206210456 cites W2953055972 @default.
- W4206210456 cites W2964117926 @default.
- W4206210456 cites W2971454948 @default.
- W4206210456 cites W2976693876 @default.
- W4206210456 cites W2988191778 @default.
- W4206210456 cites W2993346046 @default.
- W4206210456 cites W2998877626 @default.
- W4206210456 cites W3009523569 @default.
- W4206210456 cites W3015164537 @default.
- W4206210456 cites W3017827511 @default.
- W4206210456 cites W3019394142 @default.
- W4206210456 cites W3024948975 @default.
- W4206210456 cites W3033067699 @default.
- W4206210456 cites W3036168343 @default.
- W4206210456 cites W3036629841 @default.
- W4206210456 cites W3093507465 @default.
- W4206210456 cites W3095437205 @default.
- W4206210456 cites W3109407421 @default.
- W4206210456 cites W3110781789 @default.
- W4206210456 cites W3130500701 @default.
- W4206210456 cites W3134174335 @default.
- W4206210456 cites W3153964553 @default.
- W4206210456 cites W3177207049 @default.
- W4206210456 cites W3198645055 @default.
- W4206210456 doi "https://doi.org/10.1109/tase.2021.3131034" @default.
- W4206210456 hasPublicationYear "2022" @default.
- W4206210456 type Work @default.
- W4206210456 citedByCount "3" @default.
- W4206210456 countsByYear W42062104562023 @default.
- W4206210456 crossrefType "journal-article" @default.
- W4206210456 hasAuthorship W4206210456A5030402098 @default.
- W4206210456 hasAuthorship W4206210456A5036696237 @default.
- W4206210456 hasAuthorship W4206210456A5040326170 @default.
- W4206210456 hasAuthorship W4206210456A5044478333 @default.
- W4206210456 hasAuthorship W4206210456A5058644546 @default.
- W4206210456 hasAuthorship W4206210456A5084704870 @default.
- W4206210456 hasConcept C105795698 @default.
- W4206210456 hasConcept C117251300 @default.
- W4206210456 hasConcept C121332964 @default.
- W4206210456 hasConcept C127413603 @default.
- W4206210456 hasConcept C133731056 @default.
- W4206210456 hasConcept C146549078 @default.
- W4206210456 hasConcept C154945302 @default.
- W4206210456 hasConcept C158622935 @default.
- W4206210456 hasConcept C172707124 @default.
- W4206210456 hasConcept C183356978 @default.
- W4206210456 hasConcept C196628372 @default.
- W4206210456 hasConcept C203479927 @default.
- W4206210456 hasConcept C2775924081 @default.
- W4206210456 hasConcept C2778313331 @default.
- W4206210456 hasConcept C33923547 @default.
- W4206210456 hasConcept C41008148 @default.