Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206258478> ?p ?o ?g. }
- W4206258478 endingPage "6288" @default.
- W4206258478 startingPage "6273" @default.
- W4206258478 abstract "Backbreak is a rock fracture problem that exceeds the limits of the last row of holes in an explosion operation. Excessive backbreak increases operational costs and also poses a threat to mine safety. In this regard, a new hybrid intelligence approach based on random forest (RF) and particle swarm optimization (PSO) is proposed for predicting backbreak with high accuracy to reduce the unsolicited phenomenon induced by backbreak in open-pit blasting. A data set of 234 samples with six input parameters including special drilling (SD), spacing (S), burden (B), hole length (L), stemming (T) and powder factor (PF) and one output parameter backbreak (BB) is set up in this study. Seven input combinations (one with six parameters, six with five parameters) are built to generate the optimal prediction model. The PSO algorithm is integrated with the RF algorithm to find the optimal hyper-parameters of each model and the fitness function, which is the mean absolute error (MAE) of ten cross-validations. The performance capacities of the optimal models are assessed using MAE, root-mean-square error (RMSE), Pearson correlation coefficient (R2) and mean absolute percentage error (MAPE). Findings demonstrated that the PSO–RF model combining L–S–B–T–PF with MAE of 0.0132 and 0.0568, RMSE of 0.0811 and 0.1686, R2 of 0.9990 and 0.9961 and MAPE of 0.0027 and 0.0116 in training and testing phases, respectively, has optimal prediction performance. The optimal PSO–RF models were compared with the classical artificial neural network, RF, genetic programming, support vector machine and convolutional neural network models and show that the PSO–RF model has superiority in predicting backbreak. The Gini index of each input variable has also been calculated in the RF model, which was 31.2 (L), 23.1 (S), 27.4 (B), 36.6 (T), 23.4 (PF) and 16.9 (SD), respectively." @default.
- W4206258478 created "2022-01-26" @default.
- W4206258478 creator A5002972089 @default.
- W4206258478 creator A5024434626 @default.
- W4206258478 creator A5033649443 @default.
- W4206258478 creator A5038030848 @default.
- W4206258478 creator A5077665557 @default.
- W4206258478 creator A5083091719 @default.
- W4206258478 date "2022-01-15" @default.
- W4206258478 modified "2023-10-13" @default.
- W4206258478 title "A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting" @default.
- W4206258478 cites W1963837492 @default.
- W4206258478 cites W1971891346 @default.
- W4206258478 cites W1972448186 @default.
- W4206258478 cites W1976405057 @default.
- W4206258478 cites W1981947486 @default.
- W4206258478 cites W1990602556 @default.
- W4206258478 cites W1996393549 @default.
- W4206258478 cites W1996538888 @default.
- W4206258478 cites W2002536914 @default.
- W4206258478 cites W2004489837 @default.
- W4206258478 cites W2005421008 @default.
- W4206258478 cites W2017196268 @default.
- W4206258478 cites W2020041534 @default.
- W4206258478 cites W2024746652 @default.
- W4206258478 cites W2037934756 @default.
- W4206258478 cites W2038546254 @default.
- W4206258478 cites W2042309426 @default.
- W4206258478 cites W2051638083 @default.
- W4206258478 cites W2054479018 @default.
- W4206258478 cites W2070906768 @default.
- W4206258478 cites W2073087623 @default.
- W4206258478 cites W2085860939 @default.
- W4206258478 cites W2090821100 @default.
- W4206258478 cites W2093903844 @default.
- W4206258478 cites W2109364787 @default.
- W4206258478 cites W2116280993 @default.
- W4206258478 cites W2161867031 @default.
- W4206258478 cites W2170756561 @default.
- W4206258478 cites W2192900616 @default.
- W4206258478 cites W2223110200 @default.
- W4206258478 cites W2284481177 @default.
- W4206258478 cites W2303901405 @default.
- W4206258478 cites W2516879973 @default.
- W4206258478 cites W2544251039 @default.
- W4206258478 cites W2589383136 @default.
- W4206258478 cites W2620820409 @default.
- W4206258478 cites W2622774936 @default.
- W4206258478 cites W2735338765 @default.
- W4206258478 cites W2755552321 @default.
- W4206258478 cites W2770328601 @default.
- W4206258478 cites W2785055734 @default.
- W4206258478 cites W2801931701 @default.
- W4206258478 cites W2896585377 @default.
- W4206258478 cites W2899011446 @default.
- W4206258478 cites W2911964244 @default.
- W4206258478 cites W2912237847 @default.
- W4206258478 cites W2912868165 @default.
- W4206258478 cites W2935714482 @default.
- W4206258478 cites W2939286286 @default.
- W4206258478 cites W2943779402 @default.
- W4206258478 cites W2954869684 @default.
- W4206258478 cites W2981674946 @default.
- W4206258478 cites W2999044379 @default.
- W4206258478 cites W3005804753 @default.
- W4206258478 cites W3011772218 @default.
- W4206258478 cites W3013477797 @default.
- W4206258478 cites W3047827893 @default.
- W4206258478 cites W3084092512 @default.
- W4206258478 cites W3087374167 @default.
- W4206258478 cites W3093656917 @default.
- W4206258478 cites W3095300548 @default.
- W4206258478 cites W3097465463 @default.
- W4206258478 cites W3110628015 @default.
- W4206258478 cites W3111168497 @default.
- W4206258478 cites W3119457337 @default.
- W4206258478 cites W3124630960 @default.
- W4206258478 cites W3133107848 @default.
- W4206258478 cites W3159211986 @default.
- W4206258478 cites W3188559570 @default.
- W4206258478 cites W3188968325 @default.
- W4206258478 cites W3190411134 @default.
- W4206258478 cites W3199106099 @default.
- W4206258478 cites W3205140864 @default.
- W4206258478 cites W3210258470 @default.
- W4206258478 cites W4244246340 @default.
- W4206258478 cites W756015493 @default.
- W4206258478 doi "https://doi.org/10.1007/s00521-021-06776-z" @default.
- W4206258478 hasPublicationYear "2022" @default.
- W4206258478 type Work @default.
- W4206258478 citedByCount "28" @default.
- W4206258478 countsByYear W42062584782022 @default.
- W4206258478 countsByYear W42062584782023 @default.
- W4206258478 crossrefType "journal-article" @default.
- W4206258478 hasAuthorship W4206258478A5002972089 @default.
- W4206258478 hasAuthorship W4206258478A5024434626 @default.
- W4206258478 hasAuthorship W4206258478A5033649443 @default.
- W4206258478 hasAuthorship W4206258478A5038030848 @default.