Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206262110> ?p ?o ?g. }
- W4206262110 endingPage "16" @default.
- W4206262110 startingPage "1" @default.
- W4206262110 abstract "Accidents of various types in the construction of hydropower engineering projects occur frequently, which leads to significant numbers of casualties and economic losses. Identifying and eliminating near misses are a significant means of preventing accidents. Mining near-miss data can provide valuable information on how to mitigate and control hazards. However, most of the data generated in the construction of hydropower engineering projects are semi-structured text data without unified standard expression, so data association analysis is time-consuming and labor-intensive. Thus, an artificial intelligence (AI) automatic classification method based on a convolutional neural network (CNN) is adopted to obtain structured data on near-miss locations and near-miss types from safety records. The apriori algorithm is used to further mine the associations between “locations” and “types” by scanning structured data. The association results are visualized using a network diagram. A Sankey diagram is used to reveal the information flow of near-miss specific objects using the “location ⟶ type” strong association rule. The proposed method combines text classification, association rules, and the Sankey diagrams and provides a novel approach for mining semi-structured text. Moreover, the method is proven to be useful and efficient for exploring near-miss distribution laws in hydropower engineering construction to reduce the possibility of accidents and efficiently improve the safety level of hydropower engineering construction sites." @default.
- W4206262110 created "2022-01-25" @default.
- W4206262110 creator A5000026202 @default.
- W4206262110 creator A5025519866 @default.
- W4206262110 creator A5028071947 @default.
- W4206262110 creator A5070639411 @default.
- W4206262110 date "2022-01-03" @default.
- W4206262110 modified "2023-10-14" @default.
- W4206262110 title "Association Mining of Near Misses in Hydropower Engineering Construction Based on Convolutional Neural Network Text Classification" @default.
- W4206262110 cites W1960685374 @default.
- W4206262110 cites W1975851530 @default.
- W4206262110 cites W2004141834 @default.
- W4206262110 cites W2004902747 @default.
- W4206262110 cites W2006575208 @default.
- W4206262110 cites W2035027864 @default.
- W4206262110 cites W2036638988 @default.
- W4206262110 cites W2072072671 @default.
- W4206262110 cites W2089427324 @default.
- W4206262110 cites W2093421556 @default.
- W4206262110 cites W2104754852 @default.
- W4206262110 cites W2118020653 @default.
- W4206262110 cites W2166559705 @default.
- W4206262110 cites W2217433794 @default.
- W4206262110 cites W2336414332 @default.
- W4206262110 cites W2404244834 @default.
- W4206262110 cites W2541518390 @default.
- W4206262110 cites W258159988 @default.
- W4206262110 cites W2601706822 @default.
- W4206262110 cites W2604798308 @default.
- W4206262110 cites W2624663559 @default.
- W4206262110 cites W2749035190 @default.
- W4206262110 cites W2756738240 @default.
- W4206262110 cites W2780026080 @default.
- W4206262110 cites W2791521493 @default.
- W4206262110 cites W2804220263 @default.
- W4206262110 cites W2806556105 @default.
- W4206262110 cites W2806929007 @default.
- W4206262110 cites W2807188597 @default.
- W4206262110 cites W2889961245 @default.
- W4206262110 cites W2894711094 @default.
- W4206262110 cites W2895547478 @default.
- W4206262110 cites W2901643192 @default.
- W4206262110 cites W2926691444 @default.
- W4206262110 cites W2937269099 @default.
- W4206262110 cites W2971288699 @default.
- W4206262110 cites W3010212250 @default.
- W4206262110 cites W3021175879 @default.
- W4206262110 cites W3036568251 @default.
- W4206262110 cites W3055940579 @default.
- W4206262110 cites W3064097317 @default.
- W4206262110 cites W3080359515 @default.
- W4206262110 cites W3080722140 @default.
- W4206262110 cites W3088969866 @default.
- W4206262110 cites W3093560909 @default.
- W4206262110 cites W3105051840 @default.
- W4206262110 cites W3109121317 @default.
- W4206262110 cites W3112028611 @default.
- W4206262110 cites W4236791902 @default.
- W4206262110 doi "https://doi.org/10.1155/2022/4851615" @default.
- W4206262110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35024045" @default.
- W4206262110 hasPublicationYear "2022" @default.
- W4206262110 type Work @default.
- W4206262110 citedByCount "3" @default.
- W4206262110 countsByYear W42062621102022 @default.
- W4206262110 crossrefType "journal-article" @default.
- W4206262110 hasAuthorship W4206262110A5000026202 @default.
- W4206262110 hasAuthorship W4206262110A5025519866 @default.
- W4206262110 hasAuthorship W4206262110A5028071947 @default.
- W4206262110 hasAuthorship W4206262110A5070639411 @default.
- W4206262110 hasBestOaLocation W42062621101 @default.
- W4206262110 hasConcept C111472728 @default.
- W4206262110 hasConcept C119599485 @default.
- W4206262110 hasConcept C119857082 @default.
- W4206262110 hasConcept C124101348 @default.
- W4206262110 hasConcept C127413603 @default.
- W4206262110 hasConcept C138885662 @default.
- W4206262110 hasConcept C142853389 @default.
- W4206262110 hasConcept C154945302 @default.
- W4206262110 hasConcept C193524817 @default.
- W4206262110 hasConcept C40675005 @default.
- W4206262110 hasConcept C41008148 @default.
- W4206262110 hasConcept C50644808 @default.
- W4206262110 hasConcept C81363708 @default.
- W4206262110 hasConcept C81440476 @default.
- W4206262110 hasConceptScore W4206262110C111472728 @default.
- W4206262110 hasConceptScore W4206262110C119599485 @default.
- W4206262110 hasConceptScore W4206262110C119857082 @default.
- W4206262110 hasConceptScore W4206262110C124101348 @default.
- W4206262110 hasConceptScore W4206262110C127413603 @default.
- W4206262110 hasConceptScore W4206262110C138885662 @default.
- W4206262110 hasConceptScore W4206262110C142853389 @default.
- W4206262110 hasConceptScore W4206262110C154945302 @default.
- W4206262110 hasConceptScore W4206262110C193524817 @default.
- W4206262110 hasConceptScore W4206262110C40675005 @default.
- W4206262110 hasConceptScore W4206262110C41008148 @default.
- W4206262110 hasConceptScore W4206262110C50644808 @default.
- W4206262110 hasConceptScore W4206262110C81363708 @default.
- W4206262110 hasConceptScore W4206262110C81440476 @default.