Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206286253> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4206286253 abstract "Phenomics is an emerging field of study in India which integrates biology with transdisciplinary techniques including image processing, data science, and engineering. This technology became popular in many countries to scrutinize plants at different growth stages for their photosynthetic efficacy and climate resilience. Over the years, a glut of studies has investigated developing a robust technique to predict the production and yield of rice depending on the various environmental factors and phenotypic traits such as height, yield, color, and biomass. The key phenotypic signature that has been exploited by researchers around the world to measure the timely yield is the rice grains per panicle known as Spikelets per Panicle (SPP). The existing high-throughput methods for grain count are rudimentary and have several limitations, the most significant being the inability to differentiate and separate the overlapping grains and panicles unique to rice crops.In this paper, we propose and describe a novel method to determine the overall rice production for a dataset containing images of drought-affected and controlled rice crops by the identification and quantification of the total number of rice panicles and estimation of the total amount of grains. Devised a faster R-CNN machine learning model for automating and accelerating the process of identification of the panicles and the spikelets within the panicles. We have conducted a comparative study of rice crops grown in two different environmental conditions, which helps validate the theoretical hypothesis of phenotypic variations in the rice crops. The results obtained prove to be beneficial for the problem statement provider, the Indian Agricultural Research Institute to validate their hypothesis and questions formed on laboratory-based observations. But more importantly, this system would a stepping stone for integrating non-invasive techniques for rice phenotyping in the Indian agricultural sector." @default.
- W4206286253 created "2022-01-26" @default.
- W4206286253 creator A5032460808 @default.
- W4206286253 creator A5060241607 @default.
- W4206286253 creator A5061078692 @default.
- W4206286253 creator A5068513059 @default.
- W4206286253 date "2021-10-08" @default.
- W4206286253 modified "2023-10-12" @default.
- W4206286253 title "A Deep Learning Approach for Yield Estimation and Phenotype Analysis in Rice Crops" @default.
- W4206286253 cites W2099717788 @default.
- W4206286253 cites W2112794695 @default.
- W4206286253 cites W2768265868 @default.
- W4206286253 cites W2960041439 @default.
- W4206286253 cites W2997757735 @default.
- W4206286253 cites W3012947883 @default.
- W4206286253 cites W3048692976 @default.
- W4206286253 cites W3106286224 @default.
- W4206286253 doi "https://doi.org/10.1109/icaeca52838.2021.9675671" @default.
- W4206286253 hasPublicationYear "2021" @default.
- W4206286253 type Work @default.
- W4206286253 citedByCount "1" @default.
- W4206286253 countsByYear W42062862532023 @default.
- W4206286253 crossrefType "proceedings-article" @default.
- W4206286253 hasAuthorship W4206286253A5032460808 @default.
- W4206286253 hasAuthorship W4206286253A5060241607 @default.
- W4206286253 hasAuthorship W4206286253A5061078692 @default.
- W4206286253 hasAuthorship W4206286253A5068513059 @default.
- W4206286253 hasConcept C104317684 @default.
- W4206286253 hasConcept C115540264 @default.
- W4206286253 hasConcept C116834253 @default.
- W4206286253 hasConcept C127413603 @default.
- W4206286253 hasConcept C134121241 @default.
- W4206286253 hasConcept C139719470 @default.
- W4206286253 hasConcept C141231307 @default.
- W4206286253 hasConcept C150903083 @default.
- W4206286253 hasConcept C154945302 @default.
- W4206286253 hasConcept C162324750 @default.
- W4206286253 hasConcept C18903297 @default.
- W4206286253 hasConcept C189206191 @default.
- W4206286253 hasConcept C191897082 @default.
- W4206286253 hasConcept C192562407 @default.
- W4206286253 hasConcept C2778348673 @default.
- W4206286253 hasConcept C41008148 @default.
- W4206286253 hasConcept C55493867 @default.
- W4206286253 hasConcept C6557445 @default.
- W4206286253 hasConcept C75337361 @default.
- W4206286253 hasConcept C86803240 @default.
- W4206286253 hasConcept C88463610 @default.
- W4206286253 hasConcept C98108635 @default.
- W4206286253 hasConceptScore W4206286253C104317684 @default.
- W4206286253 hasConceptScore W4206286253C115540264 @default.
- W4206286253 hasConceptScore W4206286253C116834253 @default.
- W4206286253 hasConceptScore W4206286253C127413603 @default.
- W4206286253 hasConceptScore W4206286253C134121241 @default.
- W4206286253 hasConceptScore W4206286253C139719470 @default.
- W4206286253 hasConceptScore W4206286253C141231307 @default.
- W4206286253 hasConceptScore W4206286253C150903083 @default.
- W4206286253 hasConceptScore W4206286253C154945302 @default.
- W4206286253 hasConceptScore W4206286253C162324750 @default.
- W4206286253 hasConceptScore W4206286253C18903297 @default.
- W4206286253 hasConceptScore W4206286253C189206191 @default.
- W4206286253 hasConceptScore W4206286253C191897082 @default.
- W4206286253 hasConceptScore W4206286253C192562407 @default.
- W4206286253 hasConceptScore W4206286253C2778348673 @default.
- W4206286253 hasConceptScore W4206286253C41008148 @default.
- W4206286253 hasConceptScore W4206286253C55493867 @default.
- W4206286253 hasConceptScore W4206286253C6557445 @default.
- W4206286253 hasConceptScore W4206286253C75337361 @default.
- W4206286253 hasConceptScore W4206286253C86803240 @default.
- W4206286253 hasConceptScore W4206286253C88463610 @default.
- W4206286253 hasConceptScore W4206286253C98108635 @default.
- W4206286253 hasLocation W42062862531 @default.
- W4206286253 hasOpenAccess W4206286253 @default.
- W4206286253 hasPrimaryLocation W42062862531 @default.
- W4206286253 hasRelatedWork W1970358792 @default.
- W4206286253 hasRelatedWork W2084587504 @default.
- W4206286253 hasRelatedWork W2103801838 @default.
- W4206286253 hasRelatedWork W2373807791 @default.
- W4206286253 hasRelatedWork W2380088847 @default.
- W4206286253 hasRelatedWork W2567373409 @default.
- W4206286253 hasRelatedWork W3114787459 @default.
- W4206286253 hasRelatedWork W3141535635 @default.
- W4206286253 hasRelatedWork W3174692208 @default.
- W4206286253 hasRelatedWork W4206286253 @default.
- W4206286253 isParatext "false" @default.
- W4206286253 isRetracted "false" @default.
- W4206286253 workType "article" @default.