Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206307639> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4206307639 endingPage "275" @default.
- W4206307639 startingPage "273" @default.
- W4206307639 abstract "Free Access References Daniel J. Denis PhD, Daniel J. Denis PhDSearch for more papers by this author Book Author(s):Daniel J. Denis PhD, Daniel J. Denis PhDSearch for more papers by this author First published: 20 April 2021 https://doi.org/10.1002/9781119578208.biblio AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat No abstract is available for this article. Bakan, D. (1966). The test of significance in psychological research. Psychological Bulletin, 66, 423– 437. CrossrefCASPubMedWeb of Science®Google Scholar Baron, R. M. & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173– 1182. CrossrefCASPubMedWeb of Science®Google Scholar Bartle, R. G. & Sherbert, D. R. (2011). Introduction to Real Analysis. Hoboken, NJ: Wiley. Google Scholar Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square test. Journal of the American Statistical Association, 33, 526– 536. CrossrefWeb of Science®Google Scholar Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer. CrossrefGoogle Scholar Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York: Routledge. Wiley Online LibraryGoogle Scholar Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304– 1312. CrossrefWeb of Science®Google Scholar Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar Comrey, A. L. (1962). The minimum residual method of factor analysis. Psychological Reports, 11, 15– 18. CrossrefWeb of Science®Google Scholar DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292– 307. CrossrefWeb of Science®Google Scholar Denis, D. (2004). The modern hypothesis testing hybrid: R.A. Fisher’s fading influence. Journal de la Société Française de Statistique, 145, 5– 26. Google Scholar Denis, D. & Docherty, K. (2007). Late nineteenth century Britain: A social, political, and methodological context for the rise of multivariate statistics. Le Journal Electronique d’Histoire des Probabilités et de la Statistique, 3, 1– 41. Google Scholar Denis, D. (2020). Univariate, Bivariate, and Multivariate Statistics Using R. Hoboken, NJ: Wiley. Wiley Online LibraryGoogle Scholar Denis, D. (2021). Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists, with Applications in SPSS and R (2021). Hoboken, NJ: Wiley. Wiley Online LibraryGoogle Scholar Draper, N. R. & Smith, H. (1998). Applied Regression Analysis. Hoboken, NJ: Wiley. Wiley Online LibraryGoogle Scholar Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster Analysis. New York: Oxford University Press. Google Scholar Fiedler, K., Schott, M., & Meiser, T. (2011). What mediation analysis can (not) do. Journal of Experimental Social Psychology, 47(6), 1231– 1236. CrossrefWeb of Science®Google Scholar Fox, J. (2016). Applied Regression Analysis & Generalized Linear Models. New York: Sage. Google Scholar Green, C. D. (2005). Was Babbage’s analytical engine intended to be a mechanical model of the mind? History of Psychology, 8, 35– 45. CrossrefPubMedGoogle Scholar Grus, J. (2019). Data Science from Scratch: First Principles with Python. New York: O’Reilly Media. Google Scholar Guillaume, D. A. & Ravetti, L. (2018). Evaluation of chemical and physical changes in different commercial oils during heating. Acta Scientific Nutritional Health, 2, 2– 11. Google Scholar Guttag, J. V. (2013). Introduction to Computation and Programming Using Python. Cambridge, MA: MIT Press. Google Scholar Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer. CrossrefGoogle Scholar Hays, W. L. (1994). Statistics. Fort Worth, TX: Harcourt College Publishers. Google Scholar Hennig, C. (2015). What are the true clusters? Pattern Recognition Letters, 64, 53– 62. CrossrefWeb of Science®Google Scholar Howell, D. C. (2002). Statistical Methods for Psychology. Pacific Grove, CA: Duxbury Press. Google Scholar Izenman, A. J. (2008). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New York: Springer. CrossrefWeb of Science®Google Scholar James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer. CrossrefGoogle Scholar Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Pearson Prentice Hall. Google Scholar Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer. Google Scholar Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences. Pacific Grove, CA: Brooks/Cole Publishing Company. Google Scholar Kirk, R. E. (2007). Statistics: An Introduction. New York: Cengage Learning. Google Scholar Kirk, R. E. (2012). Experimental Design: Procedures for the Behavioral Sciences. Pacific Grove, CA: Brooks/Cole Publishing Company. Wiley Online LibraryGoogle Scholar Larose, C. D. & Larose, D. T. (2019). Data Science: Using Python and R. Hoboken, NJ: Wiley. Wiley Online LibraryGoogle Scholar MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York: Lawrence Erlbaum Associates. Google Scholar MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In: L. LeCam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. Berkeley, CA: University of California Press, pp. 281– 297. Google Scholar Mair, P. (2018). Modern Psychometrics with R. New York: Springer. CrossrefGoogle Scholar McCullagh, P. & Nelder, J. A. (1990). Generalized Linear Models. New York: Chapman & Hall. Google Scholar Montgomery, D. C. (2005). Design and Analysis of Experiments. Hoboken, NJ: Wiley. Google Scholar Mulaik, S. A. (2009). The Foundations of Factor Analysis. New York: McGraw-Hill. CrossrefGoogle Scholar Olson, C. L. (1976). On choosing a test statistic in multivariate analysis of variance. Psychological Bulletin, 83, 579– 586. CrossrefWeb of Science®Google Scholar Rencher, A. C. & Christensen, W. F. (2012). Methods of Multivariate Analysis. Hoboken, NJ: Wiley. Wiley Online LibraryWeb of Science®Google Scholar Savage, L. J. (1972). The Foundations of Statistics. New York: Dover Publications. Google Scholar Scheffé, H. (1999). The Analysis of Variance. Hoboken, NJ: Wiley. Google Scholar Siegel, S. & Castellan, J. (1988). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Web of Science®Google Scholar Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15, 72– 101. CrossrefWeb of Science®Google Scholar Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677– 680. CrossrefCASWeb of Science®Google Scholar Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. London: Belknap Press. Google Scholar Tabachnick, B. G. & Fidell, L. S. (2007). Using Multivariate Statistics. New York: Pearson Education. Google Scholar Tatsuoka, M. M. (1971). Multivariate Analysis: Techniques for Educational and Psychological Research. Hoboken, NJ: Wiley. Google Scholar Tufte, E. R. (2011). The Visual Display of Quantitative Information. New York: Graphics Press. Google Scholar VanderPlas, J. (2017). Python Data Science Handbook: Essential Tools for Working with Data. New York: O’Reilly Media. Google Scholar Wickham, H. & Grolemund, G. (2017). R for Data Science. Boston, MA: O’Reilly Media. Google Scholar Applied Univariate, Bivariate, and Multivariate Statistics Using Python ReferencesRelatedInformation" @default.
- W4206307639 created "2022-01-26" @default.
- W4206307639 date "2021-04-20" @default.
- W4206307639 modified "2023-09-25" @default.
- W4206307639 title "References" @default.
- W4206307639 cites W1989243075 @default.
- W4206307639 cites W2057720927 @default.
- W4206307639 cites W2059439688 @default.
- W4206307639 cites W2063957549 @default.
- W4206307639 cites W2074941944 @default.
- W4206307639 cites W2078483536 @default.
- W4206307639 cites W2094429807 @default.
- W4206307639 cites W2112223757 @default.
- W4206307639 cites W2154532634 @default.
- W4206307639 cites W2487770199 @default.
- W4206307639 cites W2492307518 @default.
- W4206307639 cites W2498923140 @default.
- W4206307639 cites W2502759836 @default.
- W4206307639 cites W2787894218 @default.
- W4206307639 cites W2891320120 @default.
- W4206307639 cites W2911325518 @default.
- W4206307639 cites W2927205376 @default.
- W4206307639 cites W3151185292 @default.
- W4206307639 cites W4212863985 @default.
- W4206307639 cites W4243451700 @default.
- W4206307639 cites W4253190058 @default.
- W4206307639 cites W4255865839 @default.
- W4206307639 cites W4292811746 @default.
- W4206307639 cites W654454365 @default.
- W4206307639 doi "https://doi.org/10.1002/9781119578208.biblio" @default.
- W4206307639 hasPublicationYear "2021" @default.
- W4206307639 type Work @default.
- W4206307639 citedByCount "0" @default.
- W4206307639 crossrefType "other" @default.
- W4206307639 hasBestOaLocation W42063076391 @default.
- W4206307639 hasConcept C41008148 @default.
- W4206307639 hasConceptScore W4206307639C41008148 @default.
- W4206307639 hasLocation W42063076391 @default.
- W4206307639 hasOpenAccess W4206307639 @default.
- W4206307639 hasPrimaryLocation W42063076391 @default.
- W4206307639 hasRelatedWork W1596801655 @default.
- W4206307639 hasRelatedWork W2130043461 @default.
- W4206307639 hasRelatedWork W2350741829 @default.
- W4206307639 hasRelatedWork W2358668433 @default.
- W4206307639 hasRelatedWork W2376932109 @default.
- W4206307639 hasRelatedWork W2382290278 @default.
- W4206307639 hasRelatedWork W2390279801 @default.
- W4206307639 hasRelatedWork W2748952813 @default.
- W4206307639 hasRelatedWork W2899084033 @default.
- W4206307639 hasRelatedWork W2530322880 @default.
- W4206307639 isParatext "false" @default.
- W4206307639 isRetracted "false" @default.
- W4206307639 workType "other" @default.