Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206307981> ?p ?o ?g. }
- W4206307981 abstract "Abstract Kinetic models of metabolic networks relate metabolic fluxes, metabolite concentrations, and enzyme levels through well-defined mechanistic relations rendering them an essential tool for systems biology studies aiming to capture and understand the behavior of living organisms. However, due to the lack of information about the kinetic properties of enzymes and the uncertainties associated with available experimental data, traditional kinetic modeling approaches often yield only a few or no kinetic models with desirable dynamical properties making the computational analysis unreliable and computationally inefficient. We present REKINDLE (REconstruction of KINetic models using Deep LEarning), a deep-learning-based framework for efficiently generating large-scale kinetic models with dynamic properties matching the ones observed in living organisms. We showcase REKINDLE’s efficiency and capabilities through three studies where we: (i) generate large populations of kinetic models that allow reliable in silico testing of hypotheses and systems biology designs, (ii) navigate the phenotypic space by leveraging the transfer learning capability of generative adversarial networks, demonstrating that the generators trained for one physiology can be fine-tuned for another physiology using a low amount of data, and (iii) expand upon existing datasets, making them amenable to thorough computational biology and data-science analyses. The results show that data-driven neural networks assimilate implicit kinetic knowledge and structure of metabolic networks and generate novel kinetic models with tailored properties and statistical diversity. We anticipate that our framework will advance our understanding of metabolism and accelerate future research in health, biotechnology, and systems and synthetic biology. REKINDLE is available as an open-access tool." @default.
- W4206307981 created "2022-01-26" @default.
- W4206307981 creator A5002950848 @default.
- W4206307981 creator A5026925271 @default.
- W4206307981 creator A5037008443 @default.
- W4206307981 creator A5039392362 @default.
- W4206307981 creator A5056011141 @default.
- W4206307981 creator A5083134846 @default.
- W4206307981 date "2022-01-06" @default.
- W4206307981 modified "2023-10-03" @default.
- W4206307981 title "Reconstructing Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks" @default.
- W4206307981 cites W1592132377 @default.
- W4206307981 cites W1758405515 @default.
- W4206307981 cites W1922871238 @default.
- W4206307981 cites W1944909517 @default.
- W4206307981 cites W1965555277 @default.
- W4206307981 cites W1969253588 @default.
- W4206307981 cites W1990812533 @default.
- W4206307981 cites W1993177346 @default.
- W4206307981 cites W1997972137 @default.
- W4206307981 cites W2012600591 @default.
- W4206307981 cites W2076063813 @default.
- W4206307981 cites W2078355959 @default.
- W4206307981 cites W2078455576 @default.
- W4206307981 cites W2102633175 @default.
- W4206307981 cites W2104108767 @default.
- W4206307981 cites W2109990759 @default.
- W4206307981 cites W2111652881 @default.
- W4206307981 cites W2113282000 @default.
- W4206307981 cites W2115189047 @default.
- W4206307981 cites W2128572161 @default.
- W4206307981 cites W2147472054 @default.
- W4206307981 cites W2161227644 @default.
- W4206307981 cites W2161304688 @default.
- W4206307981 cites W2162602080 @default.
- W4206307981 cites W2164898811 @default.
- W4206307981 cites W2263951705 @default.
- W4206307981 cites W2266907177 @default.
- W4206307981 cites W2395579298 @default.
- W4206307981 cites W2470338435 @default.
- W4206307981 cites W2561960911 @default.
- W4206307981 cites W2623883779 @default.
- W4206307981 cites W2755275228 @default.
- W4206307981 cites W2762019694 @default.
- W4206307981 cites W2889326414 @default.
- W4206307981 cites W2934480299 @default.
- W4206307981 cites W2950556475 @default.
- W4206307981 cites W2951480779 @default.
- W4206307981 cites W2969945963 @default.
- W4206307981 cites W3011286504 @default.
- W4206307981 cites W3012829536 @default.
- W4206307981 cites W3110784682 @default.
- W4206307981 cites W3199847083 @default.
- W4206307981 cites W4205776988 @default.
- W4206307981 doi "https://doi.org/10.1101/2022.01.06.475020" @default.
- W4206307981 hasPublicationYear "2022" @default.
- W4206307981 type Work @default.
- W4206307981 citedByCount "0" @default.
- W4206307981 crossrefType "posted-content" @default.
- W4206307981 hasAuthorship W4206307981A5002950848 @default.
- W4206307981 hasAuthorship W4206307981A5026925271 @default.
- W4206307981 hasAuthorship W4206307981A5037008443 @default.
- W4206307981 hasAuthorship W4206307981A5039392362 @default.
- W4206307981 hasAuthorship W4206307981A5056011141 @default.
- W4206307981 hasAuthorship W4206307981A5083134846 @default.
- W4206307981 hasBestOaLocation W42063079811 @default.
- W4206307981 hasConcept C104317684 @default.
- W4206307981 hasConcept C119857082 @default.
- W4206307981 hasConcept C127413603 @default.
- W4206307981 hasConcept C137866125 @default.
- W4206307981 hasConcept C152662350 @default.
- W4206307981 hasConcept C154945302 @default.
- W4206307981 hasConcept C183696295 @default.
- W4206307981 hasConcept C191908910 @default.
- W4206307981 hasConcept C205711294 @default.
- W4206307981 hasConcept C2522767166 @default.
- W4206307981 hasConcept C2775905019 @default.
- W4206307981 hasConcept C39890363 @default.
- W4206307981 hasConcept C41008148 @default.
- W4206307981 hasConcept C55493867 @default.
- W4206307981 hasConcept C70721500 @default.
- W4206307981 hasConcept C86803240 @default.
- W4206307981 hasConceptScore W4206307981C104317684 @default.
- W4206307981 hasConceptScore W4206307981C119857082 @default.
- W4206307981 hasConceptScore W4206307981C127413603 @default.
- W4206307981 hasConceptScore W4206307981C137866125 @default.
- W4206307981 hasConceptScore W4206307981C152662350 @default.
- W4206307981 hasConceptScore W4206307981C154945302 @default.
- W4206307981 hasConceptScore W4206307981C183696295 @default.
- W4206307981 hasConceptScore W4206307981C191908910 @default.
- W4206307981 hasConceptScore W4206307981C205711294 @default.
- W4206307981 hasConceptScore W4206307981C2522767166 @default.
- W4206307981 hasConceptScore W4206307981C2775905019 @default.
- W4206307981 hasConceptScore W4206307981C39890363 @default.
- W4206307981 hasConceptScore W4206307981C41008148 @default.
- W4206307981 hasConceptScore W4206307981C55493867 @default.
- W4206307981 hasConceptScore W4206307981C70721500 @default.
- W4206307981 hasConceptScore W4206307981C86803240 @default.
- W4206307981 hasLocation W42063079811 @default.
- W4206307981 hasLocation W42063079812 @default.