Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206326187> ?p ?o ?g. }
- W4206326187 abstract "This study provided baseline data for preventing depression in female older adults living alone by understanding the degree of their depressive disorders and factors affecting these depressive disorders by analyzing epidemiological survey data representing South Koreans. To achieve the study objective, this study explored the main risk factors of depressive disorders using the stacking ensemble machine technique. Moreover, this study developed a nomogram that could help primary physicians easily interpret high-risk groups of depressive disorders in primary care settings based on the major predictors derived from machine learning. This study analyzed 582 female older adults (≥60 years old) living alone. The depressive disorder, a target variable, was measured using the Korean version of Patient Health Questionnaire-9. This study developed five single predictive models (GBM, Random Forest, Adaboost, SVM, XGBoost) and six stacking ensemble models (GBM + Bayesian regression, RandomForest + Bayesian regression, Adaboost + Bayesian regression, SVM + Bayesian regression, XGBoost + Bayesian regression, GBM + RandomForest + Adaboost + SVM + XGBoost + Bayesian regression) to predict depressive disorders. The naive Bayesian nomogram confirmed that stress perception, subjective health, n-6 fatty acid, n-3 fatty acid, mean hours of sitting per day, and mean daily sleep hours were six major variables related to the depressive disorders of female older adults living alone. Based on the results of this study, it is required to evaluate the multiple risk factors for depression including various measurable factors such as social support." @default.
- W4206326187 created "2022-01-25" @default.
- W4206326187 creator A5064651888 @default.
- W4206326187 date "2022-01-07" @default.
- W4206326187 modified "2023-10-09" @default.
- W4206326187 title "Developing a Predictive Model for Depressive Disorders Using Stacking Ensemble and Naive Bayesian Nomogram: Using Samples Representing South Korea" @default.
- W4206326187 cites W1482876487 @default.
- W4206326187 cites W1551408775 @default.
- W4206326187 cites W1846904669 @default.
- W4206326187 cites W2024420646 @default.
- W4206326187 cites W2029233038 @default.
- W4206326187 cites W2036877487 @default.
- W4206326187 cites W2053146975 @default.
- W4206326187 cites W2063847113 @default.
- W4206326187 cites W2109792084 @default.
- W4206326187 cites W2140194825 @default.
- W4206326187 cites W2156104108 @default.
- W4206326187 cites W2617110785 @default.
- W4206326187 cites W2726456304 @default.
- W4206326187 cites W2734965357 @default.
- W4206326187 cites W2761181345 @default.
- W4206326187 cites W2770722524 @default.
- W4206326187 cites W2800752517 @default.
- W4206326187 cites W2926974277 @default.
- W4206326187 cites W2950395072 @default.
- W4206326187 cites W2966155034 @default.
- W4206326187 cites W2997264365 @default.
- W4206326187 cites W3003305758 @default.
- W4206326187 cites W3003924089 @default.
- W4206326187 cites W3019183519 @default.
- W4206326187 cites W3035290364 @default.
- W4206326187 cites W3123703371 @default.
- W4206326187 cites W3166960885 @default.
- W4206326187 cites W3173893662 @default.
- W4206326187 cites W3174735939 @default.
- W4206326187 cites W3182861948 @default.
- W4206326187 cites W3185172424 @default.
- W4206326187 cites W4243930158 @default.
- W4206326187 doi "https://doi.org/10.3389/fpsyt.2021.773290" @default.
- W4206326187 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35069283" @default.
- W4206326187 hasPublicationYear "2022" @default.
- W4206326187 type Work @default.
- W4206326187 citedByCount "5" @default.
- W4206326187 countsByYear W42063261872022 @default.
- W4206326187 countsByYear W42063261872023 @default.
- W4206326187 crossrefType "journal-article" @default.
- W4206326187 hasAuthorship W4206326187A5064651888 @default.
- W4206326187 hasBestOaLocation W42063261871 @default.
- W4206326187 hasConcept C118552586 @default.
- W4206326187 hasConcept C119857082 @default.
- W4206326187 hasConcept C12267149 @default.
- W4206326187 hasConcept C126322002 @default.
- W4206326187 hasConcept C139719470 @default.
- W4206326187 hasConcept C141404830 @default.
- W4206326187 hasConcept C151956035 @default.
- W4206326187 hasConcept C154945302 @default.
- W4206326187 hasConcept C162324750 @default.
- W4206326187 hasConcept C2776867660 @default.
- W4206326187 hasConcept C2780051608 @default.
- W4206326187 hasConcept C2780733359 @default.
- W4206326187 hasConcept C34626388 @default.
- W4206326187 hasConcept C41008148 @default.
- W4206326187 hasConcept C52001869 @default.
- W4206326187 hasConcept C71924100 @default.
- W4206326187 hasConceptScore W4206326187C118552586 @default.
- W4206326187 hasConceptScore W4206326187C119857082 @default.
- W4206326187 hasConceptScore W4206326187C12267149 @default.
- W4206326187 hasConceptScore W4206326187C126322002 @default.
- W4206326187 hasConceptScore W4206326187C139719470 @default.
- W4206326187 hasConceptScore W4206326187C141404830 @default.
- W4206326187 hasConceptScore W4206326187C151956035 @default.
- W4206326187 hasConceptScore W4206326187C154945302 @default.
- W4206326187 hasConceptScore W4206326187C162324750 @default.
- W4206326187 hasConceptScore W4206326187C2776867660 @default.
- W4206326187 hasConceptScore W4206326187C2780051608 @default.
- W4206326187 hasConceptScore W4206326187C2780733359 @default.
- W4206326187 hasConceptScore W4206326187C34626388 @default.
- W4206326187 hasConceptScore W4206326187C41008148 @default.
- W4206326187 hasConceptScore W4206326187C52001869 @default.
- W4206326187 hasConceptScore W4206326187C71924100 @default.
- W4206326187 hasFunder F4320322120 @default.
- W4206326187 hasLocation W42063261871 @default.
- W4206326187 hasLocation W42063261872 @default.
- W4206326187 hasLocation W42063261873 @default.
- W4206326187 hasLocation W42063261874 @default.
- W4206326187 hasOpenAccess W4206326187 @default.
- W4206326187 hasPrimaryLocation W42063261871 @default.
- W4206326187 hasRelatedWork W1996541855 @default.
- W4206326187 hasRelatedWork W2787191226 @default.
- W4206326187 hasRelatedWork W3033216196 @default.
- W4206326187 hasRelatedWork W3186233728 @default.
- W4206326187 hasRelatedWork W4312478656 @default.
- W4206326187 hasRelatedWork W4312917473 @default.
- W4206326187 hasRelatedWork W4327772909 @default.
- W4206326187 hasRelatedWork W4364301914 @default.
- W4206326187 hasRelatedWork W4375930479 @default.
- W4206326187 hasRelatedWork W4384828018 @default.
- W4206326187 hasVolume "12" @default.
- W4206326187 isParatext "false" @default.
- W4206326187 isRetracted "false" @default.