Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206334547> ?p ?o ?g. }
- W4206334547 endingPage "3516" @default.
- W4206334547 startingPage "3501" @default.
- W4206334547 abstract "Abstract Artificial Neural Networks (ANNs) are well-established knowledge acquisition systems with proven capacity for learning and generalisation. Therefore, ANNs are widely applied to solve engineering problems and are often used in laser-based manufacturing applications. There are different pattern recognition and control problems where ANNs can be effectively applied, and one of them is laser structuring/texturing for surface functionalisation, e.g. in generating Laser-Induced Periodic Surface Structures (LIPSS). They are a particular type of sub-micron structures that are very sensitive to changes in laser processing conditions due to processing disturbances like varying Focal Offset Distance (FOD) and/or Beam Incident Angle (BIA) during the laser processing of 3D surfaces. As a result, the functional response of LIPSS-treated surfaces might be affected, too, and typically needs to be analysed with time-consuming experimental tests. Also, there is a lack of sufficient process monitoring and quality control tools available for LIPSS-treated surfaces that could identify processing patterns and interdependences. These tools are needed to determine whether the LIPSS generation process is in control and consequently whether the surface’s functional performance is still retained. In this research, an ANN-based approach is proposed for predicting the functional response of ultrafast laser structured/textured surfaces. It was demonstrated that the processing disturbances affecting the LIPSS treatments can be classified, and then, the surface response, namely wettability, of processed surfaces can be predicted with a very high accuracy using the developed ANN tools for pre- and post-processing of LIPSS topography data, i.e. their areal surface roughness parameters. A Generative Adversarial Network (GAN) was applied as a pre-processing tool to significantly reduce the number of required experimental data. The number of areal surface roughness parameters needed to fully characterise the functional response of a surface was minimised using a combination of feature selection methods. Based on statistical analysis and evolutionary optimisation, these methods narrowed down the initial set of 21 elements to a group of 10 and 6 elements, according to redundancy and relevance criteria, respectively. The validation of ANN tools, using the salient surface parameters, yielded accuracy close to 85% when applied for identification of processing disturbances, while the wettability was predicted within an r.m.s. error of 11 degrees, equivalent to the static water contact angle (CA) measurement uncertainty." @default.
- W4206334547 created "2022-01-25" @default.
- W4206334547 creator A5005532364 @default.
- W4206334547 creator A5024510576 @default.
- W4206334547 creator A5059633863 @default.
- W4206334547 creator A5061274362 @default.
- W4206334547 creator A5079759495 @default.
- W4206334547 creator A5091304156 @default.
- W4206334547 date "2022-01-07" @default.
- W4206334547 modified "2023-09-27" @default.
- W4206334547 title "Artificial neural network tools for predicting the functional response of ultrafast laser textured/structured surfaces" @default.
- W4206334547 cites W1970207992 @default.
- W4206334547 cites W1995097281 @default.
- W4206334547 cites W2019019172 @default.
- W4206334547 cites W2023448113 @default.
- W4206334547 cites W2036599383 @default.
- W4206334547 cites W2040884411 @default.
- W4206334547 cites W2042020161 @default.
- W4206334547 cites W2052939368 @default.
- W4206334547 cites W2061464264 @default.
- W4206334547 cites W2077993830 @default.
- W4206334547 cites W2112320627 @default.
- W4206334547 cites W2118192005 @default.
- W4206334547 cites W2166341593 @default.
- W4206334547 cites W2170423728 @default.
- W4206334547 cites W2808481655 @default.
- W4206334547 cites W2809096091 @default.
- W4206334547 cites W2889053548 @default.
- W4206334547 cites W2902390267 @default.
- W4206334547 cites W2902915819 @default.
- W4206334547 cites W2914938418 @default.
- W4206334547 cites W2927396800 @default.
- W4206334547 cites W2963073614 @default.
- W4206334547 cites W2979798188 @default.
- W4206334547 cites W2980964442 @default.
- W4206334547 cites W2983749039 @default.
- W4206334547 cites W3008864373 @default.
- W4206334547 cites W3048834122 @default.
- W4206334547 cites W3110883185 @default.
- W4206334547 cites W3118451531 @default.
- W4206334547 cites W3149912470 @default.
- W4206334547 cites W4300402905 @default.
- W4206334547 cites W4300430800 @default.
- W4206334547 doi "https://doi.org/10.1007/s00170-021-08589-9" @default.
- W4206334547 hasPublicationYear "2022" @default.
- W4206334547 type Work @default.
- W4206334547 citedByCount "4" @default.
- W4206334547 countsByYear W42063345472022 @default.
- W4206334547 countsByYear W42063345472023 @default.
- W4206334547 crossrefType "journal-article" @default.
- W4206334547 hasAuthorship W4206334547A5005532364 @default.
- W4206334547 hasAuthorship W4206334547A5024510576 @default.
- W4206334547 hasAuthorship W4206334547A5059633863 @default.
- W4206334547 hasAuthorship W4206334547A5061274362 @default.
- W4206334547 hasAuthorship W4206334547A5079759495 @default.
- W4206334547 hasAuthorship W4206334547A5091304156 @default.
- W4206334547 hasBestOaLocation W42063345471 @default.
- W4206334547 hasConcept C10138342 @default.
- W4206334547 hasConcept C107365816 @default.
- W4206334547 hasConcept C111919701 @default.
- W4206334547 hasConcept C115961682 @default.
- W4206334547 hasConcept C120665830 @default.
- W4206334547 hasConcept C121332964 @default.
- W4206334547 hasConcept C154945302 @default.
- W4206334547 hasConcept C159985019 @default.
- W4206334547 hasConcept C162324750 @default.
- W4206334547 hasConcept C175291020 @default.
- W4206334547 hasConcept C178596936 @default.
- W4206334547 hasConcept C192562407 @default.
- W4206334547 hasConcept C199360897 @default.
- W4206334547 hasConcept C2524010 @default.
- W4206334547 hasConcept C2775945657 @default.
- W4206334547 hasConcept C2776799497 @default.
- W4206334547 hasConcept C33923547 @default.
- W4206334547 hasConcept C41008148 @default.
- W4206334547 hasConcept C50644808 @default.
- W4206334547 hasConcept C520434653 @default.
- W4206334547 hasConcept C9417928 @default.
- W4206334547 hasConcept C98045186 @default.
- W4206334547 hasConceptScore W4206334547C10138342 @default.
- W4206334547 hasConceptScore W4206334547C107365816 @default.
- W4206334547 hasConceptScore W4206334547C111919701 @default.
- W4206334547 hasConceptScore W4206334547C115961682 @default.
- W4206334547 hasConceptScore W4206334547C120665830 @default.
- W4206334547 hasConceptScore W4206334547C121332964 @default.
- W4206334547 hasConceptScore W4206334547C154945302 @default.
- W4206334547 hasConceptScore W4206334547C159985019 @default.
- W4206334547 hasConceptScore W4206334547C162324750 @default.
- W4206334547 hasConceptScore W4206334547C175291020 @default.
- W4206334547 hasConceptScore W4206334547C178596936 @default.
- W4206334547 hasConceptScore W4206334547C192562407 @default.
- W4206334547 hasConceptScore W4206334547C199360897 @default.
- W4206334547 hasConceptScore W4206334547C2524010 @default.
- W4206334547 hasConceptScore W4206334547C2775945657 @default.
- W4206334547 hasConceptScore W4206334547C2776799497 @default.
- W4206334547 hasConceptScore W4206334547C33923547 @default.
- W4206334547 hasConceptScore W4206334547C41008148 @default.
- W4206334547 hasConceptScore W4206334547C50644808 @default.