Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206340617> ?p ?o ?g. }
- W4206340617 endingPage "10459" @default.
- W4206340617 startingPage "10445" @default.
- W4206340617 abstract "Counting the number of people in a crowd has gained attention in the last decade. Due to its benefit to many applications such as crowd behavior analysis, crowd management, and video surveillance systems, etc. Counting crowded scenes, like stadiums, represents a challenging task due to the inherent occlusions and density of the crowd inside and outside the stadiums. Finding a pattern to control thousands of people and counting them is a challenging task. With the introduction of Convolutional Neural Networks (CNN), enables performing this task with acceptable performance. The accuracy of a CNN-based method is related to the size of data used for training. The availability of the dataset is sparse. In particular, there is no dataset in the literature that can be used for training applications for crowd scene. This paper proposes two main contributions including a new dataset for crowd counting, and a CNN-based method for counting the number of people and generating the crowd density maps. The proposed dataset for Football Supporters Crowd (FSC-Set) is composed of 6000 annotated images (manually) of different types of scenes that contain thousands of people gathering in or around the stadiums. FSC-Set contains more than 1.5 Million individuals. The collected images are captured under varying Fields of Views (FOV), illuminations, resolutions, and scales. The proposed dataset can also be utilized for other applications, such as individual’s localization and face detection as well as team recognition from supporter images. Further, we propose a CNN-based method named FSCNet for crowd counting exploiting context-aware attention, spatial-wise attention, and channel-wise attention modules. The proposed method is evaluated on our established FSC-Set and other existing datasets then compared to state-of-the-art methods. The obtained results show satisfactory performances on all the datasets. The dataset is made publicly available and can be requested using the following link: <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://sites.google.com/view/fscrowd-dataset/</uri>" @default.
- W4206340617 created "2022-01-25" @default.
- W4206340617 creator A5001020667 @default.
- W4206340617 creator A5021329808 @default.
- W4206340617 creator A5033695027 @default.
- W4206340617 creator A5051848738 @default.
- W4206340617 creator A5066436108 @default.
- W4206340617 creator A5073274738 @default.
- W4206340617 date "2022-01-01" @default.
- W4206340617 modified "2023-10-18" @default.
- W4206340617 title "FSC-Set: Counting, Localization of Football Supporters Crowd in the Stadiums" @default.
- W4206340617 cites W1635894741 @default.
- W4206340617 cites W1752870650 @default.
- W4206340617 cites W1910776219 @default.
- W4206340617 cites W1970456555 @default.
- W4206340617 cites W2006946631 @default.
- W4206340617 cites W2072232009 @default.
- W4206340617 cites W2151103935 @default.
- W4206340617 cites W2194775991 @default.
- W4206340617 cites W2343818649 @default.
- W4206340617 cites W2412782625 @default.
- W4206340617 cites W2463631526 @default.
- W4206340617 cites W2607829492 @default.
- W4206340617 cites W2744048307 @default.
- W4206340617 cites W2777197928 @default.
- W4206340617 cites W2806581075 @default.
- W4206340617 cites W2884027058 @default.
- W4206340617 cites W2886443245 @default.
- W4206340617 cites W2887042843 @default.
- W4206340617 cites W2894228073 @default.
- W4206340617 cites W2895051362 @default.
- W4206340617 cites W2903686779 @default.
- W4206340617 cites W2916199694 @default.
- W4206340617 cites W2922295717 @default.
- W4206340617 cites W2943711861 @default.
- W4206340617 cites W2945574898 @default.
- W4206340617 cites W2945582636 @default.
- W4206340617 cites W2963091558 @default.
- W4206340617 cites W2963157369 @default.
- W4206340617 cites W2963566548 @default.
- W4206340617 cites W2963693541 @default.
- W4206340617 cites W2963706010 @default.
- W4206340617 cites W2964095005 @default.
- W4206340617 cites W2964209782 @default.
- W4206340617 cites W2966893608 @default.
- W4206340617 cites W2967069910 @default.
- W4206340617 cites W2981436300 @default.
- W4206340617 cites W3004672782 @default.
- W4206340617 cites W3009231981 @default.
- W4206340617 cites W3015084401 @default.
- W4206340617 cites W3015324052 @default.
- W4206340617 cites W3015346580 @default.
- W4206340617 cites W3015801606 @default.
- W4206340617 cites W3023696206 @default.
- W4206340617 cites W3031815162 @default.
- W4206340617 cites W3034748149 @default.
- W4206340617 cites W3034785991 @default.
- W4206340617 cites W3035193053 @default.
- W4206340617 cites W3035307763 @default.
- W4206340617 cites W3049092988 @default.
- W4206340617 cites W3081099313 @default.
- W4206340617 cites W3095336680 @default.
- W4206340617 cites W3096362535 @default.
- W4206340617 cites W3101998545 @default.
- W4206340617 cites W3132610923 @default.
- W4206340617 cites W3145740854 @default.
- W4206340617 cites W3155373209 @default.
- W4206340617 cites W3172252603 @default.
- W4206340617 cites W3213366174 @default.
- W4206340617 doi "https://doi.org/10.1109/access.2022.3144607" @default.
- W4206340617 hasPublicationYear "2022" @default.
- W4206340617 type Work @default.
- W4206340617 citedByCount "5" @default.
- W4206340617 countsByYear W42063406172022 @default.
- W4206340617 countsByYear W42063406172023 @default.
- W4206340617 crossrefType "journal-article" @default.
- W4206340617 hasAuthorship W4206340617A5001020667 @default.
- W4206340617 hasAuthorship W4206340617A5021329808 @default.
- W4206340617 hasAuthorship W4206340617A5033695027 @default.
- W4206340617 hasAuthorship W4206340617A5051848738 @default.
- W4206340617 hasAuthorship W4206340617A5066436108 @default.
- W4206340617 hasAuthorship W4206340617A5073274738 @default.
- W4206340617 hasBestOaLocation W42063406171 @default.
- W4206340617 hasConcept C108583219 @default.
- W4206340617 hasConcept C144024400 @default.
- W4206340617 hasConcept C153180895 @default.
- W4206340617 hasConcept C154945302 @default.
- W4206340617 hasConcept C162324750 @default.
- W4206340617 hasConcept C177264268 @default.
- W4206340617 hasConcept C17744445 @default.
- W4206340617 hasConcept C187736073 @default.
- W4206340617 hasConcept C199360897 @default.
- W4206340617 hasConcept C199539241 @default.
- W4206340617 hasConcept C2778444522 @default.
- W4206340617 hasConcept C2779304628 @default.
- W4206340617 hasConcept C2780451532 @default.
- W4206340617 hasConcept C31972630 @default.
- W4206340617 hasConcept C36289849 @default.