Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206354073> ?p ?o ?g. }
- W4206354073 endingPage "7789" @default.
- W4206354073 startingPage "7780" @default.
- W4206354073 abstract "With the boom of social media communication, teleconferencing, and online classes, audiovisual communication over bandwidth strained networks has become an integral part of our lives. Consequently, the growing demand for the quality of experience necessitates developing algorithms to measure and enrich user experience. Prior studies have mainly focused on assessing speech quality and intelligibility with reference to audio quality assessment, while other categories in user-generated multimedia (UGM) are less explored. Moreover, frequency-domain properties of speech and UGM audio are significantly different from each other. Furthermore, there is a lack of a standard dataset for the quality assessment of UGM. Considering these limitations, in this article, we first develop the IIT-JMU-UGM audio dataset consisting of 1150 audio clips, with diverse context, content, and types of degradation commonly observed in real-world scenarios and annotated with the subjective quality scores. Finally, we propose a non-intrusive audio quality assessment metric using a stacked gated-recurrent-unit-based deep learning framework. The proposed model outperforms several baseline methods, including state-of-the-art non-intrusive and intrusive approaches. The resulting Pearson’s correlation coefficient of 0.834 indicates that the proposed method efficiently mirrors human auditory perception." @default.
- W4206354073 created "2022-01-26" @default.
- W4206354073 creator A5004880390 @default.
- W4206354073 creator A5010646067 @default.
- W4206354073 creator A5019388627 @default.
- W4206354073 creator A5026675739 @default.
- W4206354073 creator A5073884362 @default.
- W4206354073 date "2022-11-01" @default.
- W4206354073 modified "2023-10-18" @default.
- W4206354073 title "Nonintrusive Perceptual Audio Quality Assessment for User-Generated Content Using Deep Learning" @default.
- W4206354073 cites W1552314771 @default.
- W4206354073 cites W1574170747 @default.
- W4206354073 cites W1728888090 @default.
- W4206354073 cites W2028192504 @default.
- W4206354073 cites W2067295501 @default.
- W4206354073 cites W2114595828 @default.
- W4206354073 cites W2116542394 @default.
- W4206354073 cites W2125114513 @default.
- W4206354073 cites W2140828385 @default.
- W4206354073 cites W2157331557 @default.
- W4206354073 cites W2172491908 @default.
- W4206354073 cites W2242685705 @default.
- W4206354073 cites W2472977378 @default.
- W4206354073 cites W2511311723 @default.
- W4206354073 cites W2757064044 @default.
- W4206354073 cites W2794209590 @default.
- W4206354073 cites W2889495646 @default.
- W4206354073 cites W2905870830 @default.
- W4206354073 cites W2913132632 @default.
- W4206354073 cites W2922332774 @default.
- W4206354073 cites W2960513345 @default.
- W4206354073 cites W2963906950 @default.
- W4206354073 cites W2964058413 @default.
- W4206354073 cites W2964134613 @default.
- W4206354073 cites W2972394484 @default.
- W4206354073 cites W2976594877 @default.
- W4206354073 cites W3015644200 @default.
- W4206354073 cites W3037038648 @default.
- W4206354073 cites W3041816376 @default.
- W4206354073 cites W3043097943 @default.
- W4206354073 cites W3112540535 @default.
- W4206354073 cites W3129054759 @default.
- W4206354073 cites W3137298551 @default.
- W4206354073 cites W3196475561 @default.
- W4206354073 cites W3197988356 @default.
- W4206354073 cites W3200414374 @default.
- W4206354073 doi "https://doi.org/10.1109/tii.2021.3139010" @default.
- W4206354073 hasPublicationYear "2022" @default.
- W4206354073 type Work @default.
- W4206354073 citedByCount "5" @default.
- W4206354073 countsByYear W42063540732023 @default.
- W4206354073 crossrefType "journal-article" @default.
- W4206354073 hasAuthorship W4206354073A5004880390 @default.
- W4206354073 hasAuthorship W4206354073A5010646067 @default.
- W4206354073 hasAuthorship W4206354073A5019388627 @default.
- W4206354073 hasAuthorship W4206354073A5026675739 @default.
- W4206354073 hasAuthorship W4206354073A5073884362 @default.
- W4206354073 hasConcept C103910844 @default.
- W4206354073 hasConcept C111472728 @default.
- W4206354073 hasConcept C138885662 @default.
- W4206354073 hasConcept C154945302 @default.
- W4206354073 hasConcept C162324750 @default.
- W4206354073 hasConcept C167310288 @default.
- W4206354073 hasConcept C176217482 @default.
- W4206354073 hasConcept C21547014 @default.
- W4206354073 hasConcept C2779333187 @default.
- W4206354073 hasConcept C28490314 @default.
- W4206354073 hasConcept C41008148 @default.
- W4206354073 hasConcept C49774154 @default.
- W4206354073 hasConcept C5119721 @default.
- W4206354073 hasConcept C60048801 @default.
- W4206354073 hasConcept C76155785 @default.
- W4206354073 hasConceptScore W4206354073C103910844 @default.
- W4206354073 hasConceptScore W4206354073C111472728 @default.
- W4206354073 hasConceptScore W4206354073C138885662 @default.
- W4206354073 hasConceptScore W4206354073C154945302 @default.
- W4206354073 hasConceptScore W4206354073C162324750 @default.
- W4206354073 hasConceptScore W4206354073C167310288 @default.
- W4206354073 hasConceptScore W4206354073C176217482 @default.
- W4206354073 hasConceptScore W4206354073C21547014 @default.
- W4206354073 hasConceptScore W4206354073C2779333187 @default.
- W4206354073 hasConceptScore W4206354073C28490314 @default.
- W4206354073 hasConceptScore W4206354073C41008148 @default.
- W4206354073 hasConceptScore W4206354073C49774154 @default.
- W4206354073 hasConceptScore W4206354073C5119721 @default.
- W4206354073 hasConceptScore W4206354073C60048801 @default.
- W4206354073 hasConceptScore W4206354073C76155785 @default.
- W4206354073 hasIssue "11" @default.
- W4206354073 hasLocation W42063540731 @default.
- W4206354073 hasOpenAccess W4206354073 @default.
- W4206354073 hasPrimaryLocation W42063540731 @default.
- W4206354073 hasRelatedWork W1995144578 @default.
- W4206354073 hasRelatedWork W2009291387 @default.
- W4206354073 hasRelatedWork W2061256681 @default.
- W4206354073 hasRelatedWork W2333464474 @default.
- W4206354073 hasRelatedWork W2495151039 @default.
- W4206354073 hasRelatedWork W2809031010 @default.
- W4206354073 hasRelatedWork W2960369171 @default.