Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206373571> ?p ?o ?g. }
- W4206373571 abstract "Community science image libraries offer a massive, but largely untapped, source of observational data for phenological research. The iNaturalist platform offers a particularly rich archive, containing more than 49 million verifiable, georeferenced, open access images, encompassing seven continents and over 278,000 species. A critical limitation preventing scientists from taking full advantage of this rich data source is labor. Each image must be manually inspected and categorized by phenophase, which is both time-intensive and costly. Consequently, researchers may only be able to use a subset of the total number of images available in the database. While iNaturalist has the potential to yield enough data for high-resolution and spatially extensive studies, it requires more efficient tools for phenological data extraction. A promising solution is automation of the image annotation process using deep learning. Recent innovations in deep learning have made these open-source tools accessible to a general research audience. However, it is unknown whether deep learning tools can accurately and efficiently annotate phenophases in community science images. Here, we train a convolutional neural network (CNN) to annotate images of Alliaria petiolata into distinct phenophases from iNaturalist and compare the performance of the model with non-expert human annotators. We demonstrate that researchers can successfully employ deep learning techniques to extract phenological information from community science images. A CNN classified two-stage phenology (flowering and non-flowering) with 95.9% accuracy and classified four-stage phenology (vegetative, budding, flowering, and fruiting) with 86.4% accuracy. The overall accuracy of the CNN did not differ from humans (p = 0.383), although performance varied across phenophases. We found that a primary challenge of using deep learning for image annotation was not related to the model itself, but instead in the quality of the community science images. Up to 4% of A. petiolata images in iNaturalist were taken from an improper distance, were physically manipulated, or were digitally altered, which limited both human and machine annotators in accurately classifying phenology. Thus, we provide a list of photography guidelines that could be included in community science platforms to inform community scientists in the best practices for creating images that facilitate phenological analysis." @default.
- W4206373571 created "2022-01-26" @default.
- W4206373571 creator A5010990906 @default.
- W4206373571 creator A5031324835 @default.
- W4206373571 creator A5058447768 @default.
- W4206373571 creator A5061525045 @default.
- W4206373571 creator A5067680832 @default.
- W4206373571 creator A5073601081 @default.
- W4206373571 date "2022-01-17" @default.
- W4206373571 modified "2023-10-10" @default.
- W4206373571 title "Using Convolutional Neural Networks to Efficiently Extract Immense Phenological Data From Community Science Images" @default.
- W4206373571 cites W1980055462 @default.
- W4206373571 cites W2038276498 @default.
- W4206373571 cites W2085154695 @default.
- W4206373571 cites W2120102356 @default.
- W4206373571 cites W2122393312 @default.
- W4206373571 cites W2132783905 @default.
- W4206373571 cites W2151382875 @default.
- W4206373571 cites W2152092242 @default.
- W4206373571 cites W2159549867 @default.
- W4206373571 cites W2248095142 @default.
- W4206373571 cites W2514092235 @default.
- W4206373571 cites W2606138267 @default.
- W4206373571 cites W2614851820 @default.
- W4206373571 cites W2788091003 @default.
- W4206373571 cites W2791473463 @default.
- W4206373571 cites W2799793824 @default.
- W4206373571 cites W2885150722 @default.
- W4206373571 cites W2895082331 @default.
- W4206373571 cites W2922350609 @default.
- W4206373571 cites W2924707097 @default.
- W4206373571 cites W2952113774 @default.
- W4206373571 cites W2954932437 @default.
- W4206373571 cites W2982747691 @default.
- W4206373571 cites W2999380211 @default.
- W4206373571 cites W3020649160 @default.
- W4206373571 cites W3025914776 @default.
- W4206373571 cites W3038552057 @default.
- W4206373571 cites W3038987442 @default.
- W4206373571 cites W3039374023 @default.
- W4206373571 cites W3045638914 @default.
- W4206373571 cites W3048046964 @default.
- W4206373571 cites W3109347929 @default.
- W4206373571 cites W3158891123 @default.
- W4206373571 cites W3213928765 @default.
- W4206373571 cites W4239072543 @default.
- W4206373571 doi "https://doi.org/10.3389/fpls.2021.787407" @default.
- W4206373571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35111176" @default.
- W4206373571 hasPublicationYear "2022" @default.
- W4206373571 type Work @default.
- W4206373571 citedByCount "8" @default.
- W4206373571 countsByYear W42063735712022 @default.
- W4206373571 countsByYear W42063735712023 @default.
- W4206373571 crossrefType "journal-article" @default.
- W4206373571 hasAuthorship W4206373571A5010990906 @default.
- W4206373571 hasAuthorship W4206373571A5031324835 @default.
- W4206373571 hasAuthorship W4206373571A5058447768 @default.
- W4206373571 hasAuthorship W4206373571A5061525045 @default.
- W4206373571 hasAuthorship W4206373571A5067680832 @default.
- W4206373571 hasAuthorship W4206373571A5073601081 @default.
- W4206373571 hasBestOaLocation W42063735711 @default.
- W4206373571 hasConcept C108583219 @default.
- W4206373571 hasConcept C111919701 @default.
- W4206373571 hasConcept C119857082 @default.
- W4206373571 hasConcept C154945302 @default.
- W4206373571 hasConcept C18903297 @default.
- W4206373571 hasConcept C197352329 @default.
- W4206373571 hasConcept C2522767166 @default.
- W4206373571 hasConcept C41008148 @default.
- W4206373571 hasConcept C51417038 @default.
- W4206373571 hasConcept C59822182 @default.
- W4206373571 hasConcept C81363708 @default.
- W4206373571 hasConcept C86803240 @default.
- W4206373571 hasConcept C98045186 @default.
- W4206373571 hasConceptScore W4206373571C108583219 @default.
- W4206373571 hasConceptScore W4206373571C111919701 @default.
- W4206373571 hasConceptScore W4206373571C119857082 @default.
- W4206373571 hasConceptScore W4206373571C154945302 @default.
- W4206373571 hasConceptScore W4206373571C18903297 @default.
- W4206373571 hasConceptScore W4206373571C197352329 @default.
- W4206373571 hasConceptScore W4206373571C2522767166 @default.
- W4206373571 hasConceptScore W4206373571C41008148 @default.
- W4206373571 hasConceptScore W4206373571C51417038 @default.
- W4206373571 hasConceptScore W4206373571C59822182 @default.
- W4206373571 hasConceptScore W4206373571C81363708 @default.
- W4206373571 hasConceptScore W4206373571C86803240 @default.
- W4206373571 hasConceptScore W4206373571C98045186 @default.
- W4206373571 hasLocation W42063735711 @default.
- W4206373571 hasLocation W42063735712 @default.
- W4206373571 hasLocation W42063735713 @default.
- W4206373571 hasOpenAccess W4206373571 @default.
- W4206373571 hasPrimaryLocation W42063735711 @default.
- W4206373571 hasRelatedWork W2731899572 @default.
- W4206373571 hasRelatedWork W2999805992 @default.
- W4206373571 hasRelatedWork W3116150086 @default.
- W4206373571 hasRelatedWork W3133861977 @default.
- W4206373571 hasRelatedWork W4200173597 @default.
- W4206373571 hasRelatedWork W4223943233 @default.
- W4206373571 hasRelatedWork W4291897433 @default.
- W4206373571 hasRelatedWork W4312417841 @default.