Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206384927> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4206384927 endingPage "72" @default.
- W4206384927 startingPage "71" @default.
- W4206384927 abstract "We thank Nordström et al. for their interest in our multimodal neuromonitoring study of cardiopulmonary resuscitation in pigs.1.Putzer G. Martini J. Spraider P. et al.Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support.Resuscitation. 2021; 168 (Epub 2021 Aug 4 PMID: 34363854): 151-159https://doi.org/10.1016/j.resuscitation.2021.07.036Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar In this study, we resuscitated 14 animals after eight minutes of cardiac arrest using extracorporeal life support (ECLS), with continuous adrenaline administered after ten minutes of ECLS to achieve a target MAP of 40 (n = 7) or 60 mmHg (n = 7). This target MAP was then maintained for 20 min and parameters of regional cerebral blood flow, cerebral oxygenation and cerebral metabolism were observed to improve compared to ECLS alone. Nordström et al. strongly criticise the collection times for cerebral microdialysis (CMD) in our study, which they believe preclude interpretation of the data.2.Nordström C.H. Jakobsen R. Mølstrøm S. Nielsen T.H. Cerebral microdialysis after cardiac arrest - Misinterpretations based on a misconception.Resuscitation. 2021; 169 (Epub 2021 Nov 17 PMID: 34800591): 227-228https://doi.org/10.1016/j.resuscitation.2021.10.045Abstract Full Text Full Text PDF PubMed Scopus (1) Google Scholar We agree that brain metabolites appear with a certain delay in the collected CMD fluid, as the microdialysate requires time from the catheter tip to the vial. However, the criticism by Nordström et al. is based on a false assumption. When using a 71 high cut-off CMD catheter (M Dialysis AB, Stockholm, Sweden) with an outlet tube length of 220 mm and a flow rate of 2 μL/min, the transit time from the catheter tip to the vial is not 5–10 min, as they erroneously assume, but exactly two minutes and 55 s (confirmed by M Dialysis AB). Further, microdialysate samples were obtained every five minutes after starting ECLS. Thus, the first CMD measurement during reperfusion partly reflects the brain metabolic profile during cardiac arrest, but the second measurement fully depicts the increasingly severe disturbance of brain metabolism during low-flow ECLS. Consistently, the first CMD measurement after the start of adrenaline contains brain metabolites that were partially formed in the previous collection period. Not surprisingly, the mean lactate to pyruvate ratio of all animals was not statistically different in these two samples (p = 0.7196). The remaining three CMD measurements, which exclusively contain brain metabolites sampled during ECLS in conjunction with adrenaline administration, revealed a clear trend in the lactate to pyruvate ratio indicating amelioration of cerebral metabolism. In summary, we agree with Nordström et al. that the timing of CMD measurements must be carefully chosen to accurately detect changes in brain metabolism. However, the short transit time of the microdialysate in our study and the high temporal granularity of our data allow an insightful description of the effect of low-flow ECLS with and without adrenaline administration on cerebral metabolism. Moreover, the metabolic data are supported by the measurements of regional cerebral blood flow and brain tissue oxygen tension, which clearly indicate the beneficial effect of adrenaline during low-flow ECLS emphasizing the strength of our multimodal neuromonitoring model.1.Putzer G. Martini J. Spraider P. et al.Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support.Resuscitation. 2021; 168 (Epub 2021 Aug 4 PMID: 34363854): 151-159https://doi.org/10.1016/j.resuscitation.2021.07.036Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar, 3.Strapazzon G. Putzer G. Dal Cappello T. et al.Effects of hypothermia, hypoxia, and hypercapnia on brain oxygenation and hemodynamic parameters during simulated avalanche burial: a porcine study.J Appl Physiol (1985). 2021; 130 (Epub 2020 Nov 5. PMID: 33151777): 237-244https://doi.org/10.1152/japplphysiol.00498.2020Crossref PubMed Google Scholar, 4.Putzer G. Martini J. Spraider P. et al.Effects of different adrenaline doses on cerebral oxygenation and cerebral metabolism during cardiopulmonary resuscitation in pigs.Resuscitation. 2020 Nov; 156 (Epub 2020 Jul 8 PMID: 32652117): 223-229https://doi.org/10.1016/j.resuscitation.2020.06.024Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar, 5.Putzer G. Braun P. Martini J. et al.Effects of head-up vs. supine CPR on cerebral oxygenation and cerebral metabolism - a prospective, randomized porcine study.Resuscitation. 2018; 128 (Epub 2018 May 1. PMID: 29727706): 51-55https://doi.org/10.1016/j.resuscitation.2018.04.038Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Cerebral microdialysis after cardiac arrest – Misinterpretations based on a misconceptionResuscitationVol. 169PreviewWith interest, we read the article by Putzer et al. reporting on the effects of adrenaline on regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during cardiopulmonary resuscitation in a porcine cardiac arrest model.1 In their study the authors evaluate cerebral energy metabolism from intracerebral microdialysis and analysis of lactate, pyruvate and glucose. Full-Text PDF" @default.
- W4206384927 created "2022-01-26" @default.
- W4206384927 creator A5016562960 @default.
- W4206384927 creator A5056142790 @default.
- W4206384927 creator A5060973800 @default.
- W4206384927 creator A5081228771 @default.
- W4206384927 date "2022-02-01" @default.
- W4206384927 modified "2023-09-29" @default.
- W4206384927 title "Reply to: Cerebral microdialysis after cardiac arrest – Misinterpretations based on a misconception" @default.
- W4206384927 cites W2802575166 @default.
- W4206384927 cites W3042138861 @default.
- W4206384927 cites W3095430964 @default.
- W4206384927 cites W3187117063 @default.
- W4206384927 cites W3212730725 @default.
- W4206384927 doi "https://doi.org/10.1016/j.resuscitation.2021.12.033" @default.
- W4206384927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34979162" @default.
- W4206384927 hasPublicationYear "2022" @default.
- W4206384927 type Work @default.
- W4206384927 citedByCount "1" @default.
- W4206384927 countsByYear W42063849272022 @default.
- W4206384927 crossrefType "journal-article" @default.
- W4206384927 hasAuthorship W4206384927A5016562960 @default.
- W4206384927 hasAuthorship W4206384927A5056142790 @default.
- W4206384927 hasAuthorship W4206384927A5060973800 @default.
- W4206384927 hasAuthorship W4206384927A5081228771 @default.
- W4206384927 hasBestOaLocation W42063849271 @default.
- W4206384927 hasConcept C126322002 @default.
- W4206384927 hasConcept C154281038 @default.
- W4206384927 hasConcept C157767197 @default.
- W4206384927 hasConcept C2777055891 @default.
- W4206384927 hasConcept C2778165595 @default.
- W4206384927 hasConcept C2779915274 @default.
- W4206384927 hasConcept C2780640149 @default.
- W4206384927 hasConcept C42219234 @default.
- W4206384927 hasConcept C50156730 @default.
- W4206384927 hasConcept C529278444 @default.
- W4206384927 hasConcept C71924100 @default.
- W4206384927 hasConceptScore W4206384927C126322002 @default.
- W4206384927 hasConceptScore W4206384927C154281038 @default.
- W4206384927 hasConceptScore W4206384927C157767197 @default.
- W4206384927 hasConceptScore W4206384927C2777055891 @default.
- W4206384927 hasConceptScore W4206384927C2778165595 @default.
- W4206384927 hasConceptScore W4206384927C2779915274 @default.
- W4206384927 hasConceptScore W4206384927C2780640149 @default.
- W4206384927 hasConceptScore W4206384927C42219234 @default.
- W4206384927 hasConceptScore W4206384927C50156730 @default.
- W4206384927 hasConceptScore W4206384927C529278444 @default.
- W4206384927 hasConceptScore W4206384927C71924100 @default.
- W4206384927 hasFunder F4320326164 @default.
- W4206384927 hasLocation W42063849271 @default.
- W4206384927 hasLocation W42063849272 @default.
- W4206384927 hasOpenAccess W4206384927 @default.
- W4206384927 hasPrimaryLocation W42063849271 @default.
- W4206384927 hasRelatedWork W1983438289 @default.
- W4206384927 hasRelatedWork W1990484414 @default.
- W4206384927 hasRelatedWork W2044924835 @default.
- W4206384927 hasRelatedWork W2312758224 @default.
- W4206384927 hasRelatedWork W2385390369 @default.
- W4206384927 hasRelatedWork W3083420760 @default.
- W4206384927 hasRelatedWork W3139464836 @default.
- W4206384927 hasRelatedWork W3149051618 @default.
- W4206384927 hasRelatedWork W3187117063 @default.
- W4206384927 hasRelatedWork W4206384927 @default.
- W4206384927 hasVolume "171" @default.
- W4206384927 isParatext "false" @default.
- W4206384927 isRetracted "false" @default.
- W4206384927 workType "article" @default.