Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206386071> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4206386071 abstract "Slope sliding often occurs in the mountainous areas of Taiwan, and it often causes casualties. One of the main causes of the damages is rainfall. Therefore, if it is possible to estimate the rainfall in the frequently collapsed place in a few hours before the slope collapse event may occur. The people can be evacuated or prohibited from entering the road or areas in advance to avoid the disaster caused by the collapse. The amount of accumulated rainfall and duration are correlated to many factors, including seasonality, extreme climate, typhoon path, terrain, etc. These factors may affect the accumulated rainfall and rainfall intensity. Therefore, this study used a large amount of past rainfall data to try to estimate rainfall and intensity. Under the recent rapid development of science and technology, artificial intelligence (Artificial Intelligence, AI) capabilities have been strengthened. Artificial intelligence technology has been introduced in various fields. Artificial intelligence has the ability to achieve deep learning. In the field of geotechnical engineering, the technology of artificial intelligence is beginning to be widely valued, such as related geodetic data analysis and image recognition. This research uses the existing research and application of artificial intelligence in the field of geotechnical engineering. Recurrent neural network (RNN) and long short-term memory (LSTM) models are used to predict the future rainfall trends of potential sliding slopes in mountainous areas of Taiwan. The hourly rainfall information obtained from the rainfall station far away from the potential sliding location were used to simulate and predict the rainfall duration and accumulated rainfall at the location. The predict rainfall information can be used to determine whether sliding damage may occur. It can also be used to calculate the evacuation time before the critical rainfall, and there is a buffer time before the collapse and damage may occur, and countermeasures and warning measures can be made." @default.
- W4206386071 created "2022-01-26" @default.
- W4206386071 creator A5002666535 @default.
- W4206386071 creator A5032049774 @default.
- W4206386071 creator A5050529889 @default.
- W4206386071 date "2021-10-27" @default.
- W4206386071 modified "2023-09-23" @default.
- W4206386071 title "Rainfall Forecasting Using Recurrent Neural Network and LSTM in Central Taiwan" @default.
- W4206386071 cites W1964394164 @default.
- W4206386071 cites W1974058662 @default.
- W4206386071 cites W2026967810 @default.
- W4206386071 cites W2044896258 @default.
- W4206386071 cites W2090935252 @default.
- W4206386071 cites W2182863317 @default.
- W4206386071 cites W2301690049 @default.
- W4206386071 cites W2326748019 @default.
- W4206386071 cites W2335032106 @default.
- W4206386071 cites W2357131595 @default.
- W4206386071 cites W2398696224 @default.
- W4206386071 cites W2776722907 @default.
- W4206386071 cites W2790921492 @default.
- W4206386071 cites W2791568593 @default.
- W4206386071 cites W2920808372 @default.
- W4206386071 cites W2959500497 @default.
- W4206386071 cites W3006506571 @default.
- W4206386071 doi "https://doi.org/10.1109/iceet53442.2021.9659726" @default.
- W4206386071 hasPublicationYear "2021" @default.
- W4206386071 type Work @default.
- W4206386071 citedByCount "1" @default.
- W4206386071 countsByYear W42063860712023 @default.
- W4206386071 crossrefType "proceedings-article" @default.
- W4206386071 hasAuthorship W4206386071A5002666535 @default.
- W4206386071 hasAuthorship W4206386071A5032049774 @default.
- W4206386071 hasAuthorship W4206386071A5050529889 @default.
- W4206386071 hasConcept C127313418 @default.
- W4206386071 hasConcept C147168706 @default.
- W4206386071 hasConcept C153294291 @default.
- W4206386071 hasConcept C154945302 @default.
- W4206386071 hasConcept C161840515 @default.
- W4206386071 hasConcept C181654704 @default.
- W4206386071 hasConcept C186295008 @default.
- W4206386071 hasConcept C187320778 @default.
- W4206386071 hasConcept C205649164 @default.
- W4206386071 hasConcept C39432304 @default.
- W4206386071 hasConcept C41008148 @default.
- W4206386071 hasConcept C49204034 @default.
- W4206386071 hasConcept C50644808 @default.
- W4206386071 hasConcept C58640448 @default.
- W4206386071 hasConceptScore W4206386071C127313418 @default.
- W4206386071 hasConceptScore W4206386071C147168706 @default.
- W4206386071 hasConceptScore W4206386071C153294291 @default.
- W4206386071 hasConceptScore W4206386071C154945302 @default.
- W4206386071 hasConceptScore W4206386071C161840515 @default.
- W4206386071 hasConceptScore W4206386071C181654704 @default.
- W4206386071 hasConceptScore W4206386071C186295008 @default.
- W4206386071 hasConceptScore W4206386071C187320778 @default.
- W4206386071 hasConceptScore W4206386071C205649164 @default.
- W4206386071 hasConceptScore W4206386071C39432304 @default.
- W4206386071 hasConceptScore W4206386071C41008148 @default.
- W4206386071 hasConceptScore W4206386071C49204034 @default.
- W4206386071 hasConceptScore W4206386071C50644808 @default.
- W4206386071 hasConceptScore W4206386071C58640448 @default.
- W4206386071 hasLocation W42063860711 @default.
- W4206386071 hasOpenAccess W4206386071 @default.
- W4206386071 hasPrimaryLocation W42063860711 @default.
- W4206386071 hasRelatedWork W1525052842 @default.
- W4206386071 hasRelatedWork W1997946100 @default.
- W4206386071 hasRelatedWork W2049167610 @default.
- W4206386071 hasRelatedWork W2181090891 @default.
- W4206386071 hasRelatedWork W2188454445 @default.
- W4206386071 hasRelatedWork W2365718528 @default.
- W4206386071 hasRelatedWork W2378503248 @default.
- W4206386071 hasRelatedWork W2740529902 @default.
- W4206386071 hasRelatedWork W3010921521 @default.
- W4206386071 hasRelatedWork W3168246037 @default.
- W4206386071 isParatext "false" @default.
- W4206386071 isRetracted "false" @default.
- W4206386071 workType "article" @default.