Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206408803> ?p ?o ?g. }
- W4206408803 endingPage "105307" @default.
- W4206408803 startingPage "105307" @default.
- W4206408803 abstract "This paper aims to simulate and predict global permafrost distribution, and analyse its change from 2010 to 2100 under different climate scenarios. Based on different factors (topography, land cover, climate and location) and global permafrost distribution status, logistic regression model (LRM) is chosen and constructed to simulate and predict the global permafrost distributions. Thus, the global permafrost distributions at T1 (2010–2040), T2 (2040–2070) and T3 (2070–2100) are predicted under different climate scenarios (RCP26, RCP45 and RCP85). From T1 to T3, the area of global permafrost has the largest degradation under RCP85 scenarios. From RCP26 to RCP85 at T3, the area of the degraded permafrost reached 0.671 × 108 km2. The degraded permafrost mainly distributes in east Asia, west Asia, north Europe and north America. The west Asia has the highest degrading distance, about 600 km under the situations of both RCP85 from T1 to T3 and from RCP26 to RCP85 at T3." @default.
- W4206408803 created "2022-01-26" @default.
- W4206408803 creator A5023919188 @default.
- W4206408803 creator A5032586776 @default.
- W4206408803 creator A5051649993 @default.
- W4206408803 creator A5060255319 @default.
- W4206408803 creator A5072925881 @default.
- W4206408803 creator A5087300057 @default.
- W4206408803 date "2022-03-01" @default.
- W4206408803 modified "2023-10-18" @default.
- W4206408803 title "Global permafrost simulation and prediction from 2010 to 2100 under different climate scenarios" @default.
- W4206408803 cites W1599861940 @default.
- W4206408803 cites W1818539119 @default.
- W4206408803 cites W1867191789 @default.
- W4206408803 cites W1972725454 @default.
- W4206408803 cites W1985905812 @default.
- W4206408803 cites W1999041974 @default.
- W4206408803 cites W2004148179 @default.
- W4206408803 cites W2009225674 @default.
- W4206408803 cites W2010684302 @default.
- W4206408803 cites W2017793249 @default.
- W4206408803 cites W2025565864 @default.
- W4206408803 cites W2040297489 @default.
- W4206408803 cites W2042516996 @default.
- W4206408803 cites W2042683340 @default.
- W4206408803 cites W2052461149 @default.
- W4206408803 cites W2064438038 @default.
- W4206408803 cites W2077570405 @default.
- W4206408803 cites W2090053838 @default.
- W4206408803 cites W2092859894 @default.
- W4206408803 cites W2093720250 @default.
- W4206408803 cites W2123759767 @default.
- W4206408803 cites W2151622292 @default.
- W4206408803 cites W2238361499 @default.
- W4206408803 cites W2531341442 @default.
- W4206408803 cites W2586082079 @default.
- W4206408803 cites W2587791625 @default.
- W4206408803 cites W2621113401 @default.
- W4206408803 cites W2697212161 @default.
- W4206408803 cites W2807719866 @default.
- W4206408803 cites W2909292862 @default.
- W4206408803 cites W2930598214 @default.
- W4206408803 cites W2949440094 @default.
- W4206408803 cites W2951940431 @default.
- W4206408803 cites W3034613122 @default.
- W4206408803 cites W3046899448 @default.
- W4206408803 cites W3097076101 @default.
- W4206408803 cites W3154471253 @default.
- W4206408803 cites W4384613103 @default.
- W4206408803 cites W2078935429 @default.
- W4206408803 cites W2998731210 @default.
- W4206408803 cites W3141700289 @default.
- W4206408803 doi "https://doi.org/10.1016/j.envsoft.2022.105307" @default.
- W4206408803 hasPublicationYear "2022" @default.
- W4206408803 type Work @default.
- W4206408803 citedByCount "3" @default.
- W4206408803 countsByYear W42064088032023 @default.
- W4206408803 crossrefType "journal-article" @default.
- W4206408803 hasAuthorship W4206408803A5023919188 @default.
- W4206408803 hasAuthorship W4206408803A5032586776 @default.
- W4206408803 hasAuthorship W4206408803A5051649993 @default.
- W4206408803 hasAuthorship W4206408803A5060255319 @default.
- W4206408803 hasAuthorship W4206408803A5072925881 @default.
- W4206408803 hasAuthorship W4206408803A5087300057 @default.
- W4206408803 hasConcept C100970517 @default.
- W4206408803 hasConcept C110121322 @default.
- W4206408803 hasConcept C111368507 @default.
- W4206408803 hasConcept C115343472 @default.
- W4206408803 hasConcept C127313418 @default.
- W4206408803 hasConcept C132651083 @default.
- W4206408803 hasConcept C134306372 @default.
- W4206408803 hasConcept C15098985 @default.
- W4206408803 hasConcept C168754636 @default.
- W4206408803 hasConcept C18903297 @default.
- W4206408803 hasConcept C205649164 @default.
- W4206408803 hasConcept C2780648208 @default.
- W4206408803 hasConcept C2988944679 @default.
- W4206408803 hasConcept C33923547 @default.
- W4206408803 hasConcept C39432304 @default.
- W4206408803 hasConcept C4792198 @default.
- W4206408803 hasConcept C49204034 @default.
- W4206408803 hasConcept C86803240 @default.
- W4206408803 hasConceptScore W4206408803C100970517 @default.
- W4206408803 hasConceptScore W4206408803C110121322 @default.
- W4206408803 hasConceptScore W4206408803C111368507 @default.
- W4206408803 hasConceptScore W4206408803C115343472 @default.
- W4206408803 hasConceptScore W4206408803C127313418 @default.
- W4206408803 hasConceptScore W4206408803C132651083 @default.
- W4206408803 hasConceptScore W4206408803C134306372 @default.
- W4206408803 hasConceptScore W4206408803C15098985 @default.
- W4206408803 hasConceptScore W4206408803C168754636 @default.
- W4206408803 hasConceptScore W4206408803C18903297 @default.
- W4206408803 hasConceptScore W4206408803C205649164 @default.
- W4206408803 hasConceptScore W4206408803C2780648208 @default.
- W4206408803 hasConceptScore W4206408803C2988944679 @default.
- W4206408803 hasConceptScore W4206408803C33923547 @default.
- W4206408803 hasConceptScore W4206408803C39432304 @default.
- W4206408803 hasConceptScore W4206408803C4792198 @default.