Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206410915> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4206410915 endingPage "536" @default.
- W4206410915 startingPage "525" @default.
- W4206410915 abstract "Ribu Hassini, S. Gireesh Kumar, T. Kowshik Hurshan, S.The two major components in monitoring and controlling industrial processes are SCADA (Supervisory Control and Data Acquisition) and ICS (Industrial Control System). Since their demand has been increased all over the World, they have gained more attention and because of their efficiency and high performance, these systems became mandatory in all countries. In recent times it has become an interesting target for adversaries because most of the infrastructure is automated but security is not strong enough to protect the entire system. Many loopholes make the attacker a way to exploit the vulnerability, hence protecting these systems is becoming more critical. A Hardware-in-the-loop testbed is used in this paper and its main purpose is to simulate power generation units and various attacks are performed on this testbed as well as the attack dataset is also exploited. In this research paper different machine learning algorithms are applied to the dataset and it is found that AdaBoost has better accuracy and performance compared to other algorithms and when it comes to deep learning CNN has the best accuracy compared to other ones." @default.
- W4206410915 created "2022-01-26" @default.
- W4206410915 creator A5020177790 @default.
- W4206410915 creator A5030392235 @default.
- W4206410915 creator A5084961022 @default.
- W4206410915 date "2022-01-01" @default.
- W4206410915 modified "2023-10-16" @default.
- W4206410915 title "A Machine Learning and Deep Neural Network Approach in Industrial Control Systems" @default.
- W4206410915 cites W1620265354 @default.
- W4206410915 cites W2033773771 @default.
- W4206410915 cites W2149329990 @default.
- W4206410915 cites W2736433677 @default.
- W4206410915 cites W2902103276 @default.
- W4206410915 cites W2946419751 @default.
- W4206410915 cites W3043516820 @default.
- W4206410915 cites W3097879523 @default.
- W4206410915 cites W3129057775 @default.
- W4206410915 doi "https://doi.org/10.1007/978-981-16-5655-2_51" @default.
- W4206410915 hasPublicationYear "2022" @default.
- W4206410915 type Work @default.
- W4206410915 citedByCount "2" @default.
- W4206410915 countsByYear W42064109152022 @default.
- W4206410915 crossrefType "book-chapter" @default.
- W4206410915 hasAuthorship W4206410915A5020177790 @default.
- W4206410915 hasAuthorship W4206410915A5030392235 @default.
- W4206410915 hasAuthorship W4206410915A5084961022 @default.
- W4206410915 hasConcept C108583219 @default.
- W4206410915 hasConcept C113863187 @default.
- W4206410915 hasConcept C119599485 @default.
- W4206410915 hasConcept C119857082 @default.
- W4206410915 hasConcept C127413603 @default.
- W4206410915 hasConcept C154945302 @default.
- W4206410915 hasConcept C165696696 @default.
- W4206410915 hasConcept C2775924081 @default.
- W4206410915 hasConcept C31258907 @default.
- W4206410915 hasConcept C31395832 @default.
- W4206410915 hasConcept C38652104 @default.
- W4206410915 hasConcept C40071531 @default.
- W4206410915 hasConcept C41008148 @default.
- W4206410915 hasConcept C50644808 @default.
- W4206410915 hasConcept C95713431 @default.
- W4206410915 hasConceptScore W4206410915C108583219 @default.
- W4206410915 hasConceptScore W4206410915C113863187 @default.
- W4206410915 hasConceptScore W4206410915C119599485 @default.
- W4206410915 hasConceptScore W4206410915C119857082 @default.
- W4206410915 hasConceptScore W4206410915C127413603 @default.
- W4206410915 hasConceptScore W4206410915C154945302 @default.
- W4206410915 hasConceptScore W4206410915C165696696 @default.
- W4206410915 hasConceptScore W4206410915C2775924081 @default.
- W4206410915 hasConceptScore W4206410915C31258907 @default.
- W4206410915 hasConceptScore W4206410915C31395832 @default.
- W4206410915 hasConceptScore W4206410915C38652104 @default.
- W4206410915 hasConceptScore W4206410915C40071531 @default.
- W4206410915 hasConceptScore W4206410915C41008148 @default.
- W4206410915 hasConceptScore W4206410915C50644808 @default.
- W4206410915 hasConceptScore W4206410915C95713431 @default.
- W4206410915 hasLocation W42064109151 @default.
- W4206410915 hasOpenAccess W4206410915 @default.
- W4206410915 hasPrimaryLocation W42064109151 @default.
- W4206410915 hasRelatedWork W2150641169 @default.
- W4206410915 hasRelatedWork W3129057775 @default.
- W4206410915 hasRelatedWork W4200072308 @default.
- W4206410915 hasRelatedWork W4205769219 @default.
- W4206410915 hasRelatedWork W4206410915 @default.
- W4206410915 hasRelatedWork W4223943233 @default.
- W4206410915 hasRelatedWork W4254042909 @default.
- W4206410915 hasRelatedWork W4312200629 @default.
- W4206410915 hasRelatedWork W4360585206 @default.
- W4206410915 hasRelatedWork W4364306694 @default.
- W4206410915 isParatext "false" @default.
- W4206410915 isRetracted "false" @default.
- W4206410915 workType "book-chapter" @default.