Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206459315> ?p ?o ?g. }
- W4206459315 endingPage "181" @default.
- W4206459315 startingPage "181" @default.
- W4206459315 abstract "The aim of this study was to investigate the potential of a machine learning algorithm to accurately classify parenchymal density in spiral breast-CT (BCT), using a deep convolutional neural network (dCNN). In this retrospectively designed study, 634 examinations of 317 patients were included. After image selection and preparation, 5589 images from 634 different BCT examinations were sorted by a four-level density scale, ranging from A to D, using ACR BI-RADS-like criteria. Subsequently four different dCNN models (differences in optimizer and spatial resolution) were trained (70% of data), validated (20%) and tested on a real-world dataset (10%). Moreover, dCNN accuracy was compared to a human readout. The overall performance of the model with lowest resolution of input data was highest, reaching an accuracy on the real-world dataset of 85.8%. The intra-class correlation of the dCNN and the two readers was almost perfect (0.92) and kappa values between both readers and the dCNN were substantial (0.71-0.76). Moreover, the diagnostic performance between the readers and the dCNN showed very good correspondence with an AUC of 0.89. Artificial Intelligence in the form of a dCNN can be used for standardized, observer-independent and reliable classification of parenchymal density in a BCT examination." @default.
- W4206459315 created "2022-01-25" @default.
- W4206459315 creator A5019558347 @default.
- W4206459315 creator A5059378768 @default.
- W4206459315 creator A5061227035 @default.
- W4206459315 creator A5066983807 @default.
- W4206459315 creator A5077851553 @default.
- W4206459315 creator A5080119870 @default.
- W4206459315 creator A5084093500 @default.
- W4206459315 date "2022-01-13" @default.
- W4206459315 modified "2023-10-18" @default.
- W4206459315 title "Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?" @default.
- W4206459315 cites W1980527762 @default.
- W4206459315 cites W1982206055 @default.
- W4206459315 cites W2010517573 @default.
- W4206459315 cites W2022362197 @default.
- W4206459315 cites W2031191659 @default.
- W4206459315 cites W2037789405 @default.
- W4206459315 cites W2058265485 @default.
- W4206459315 cites W2060481044 @default.
- W4206459315 cites W2101073067 @default.
- W4206459315 cites W2105120592 @default.
- W4206459315 cites W2131597845 @default.
- W4206459315 cites W2164777277 @default.
- W4206459315 cites W2322522942 @default.
- W4206459315 cites W2328176404 @default.
- W4206459315 cites W2582617788 @default.
- W4206459315 cites W2588570836 @default.
- W4206459315 cites W2724454065 @default.
- W4206459315 cites W2727051654 @default.
- W4206459315 cites W2783801120 @default.
- W4206459315 cites W2794666526 @default.
- W4206459315 cites W2890319274 @default.
- W4206459315 cites W2890514615 @default.
- W4206459315 cites W2903514456 @default.
- W4206459315 cites W2914212565 @default.
- W4206459315 cites W2921821726 @default.
- W4206459315 cites W2929215516 @default.
- W4206459315 cites W2973270799 @default.
- W4206459315 cites W2979948269 @default.
- W4206459315 cites W3013886113 @default.
- W4206459315 cites W3110148606 @default.
- W4206459315 cites W3159056005 @default.
- W4206459315 doi "https://doi.org/10.3390/diagnostics12010181" @default.
- W4206459315 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35054348" @default.
- W4206459315 hasPublicationYear "2022" @default.
- W4206459315 type Work @default.
- W4206459315 citedByCount "4" @default.
- W4206459315 countsByYear W42064593152022 @default.
- W4206459315 countsByYear W42064593152023 @default.
- W4206459315 crossrefType "journal-article" @default.
- W4206459315 hasAuthorship W4206459315A5019558347 @default.
- W4206459315 hasAuthorship W4206459315A5059378768 @default.
- W4206459315 hasAuthorship W4206459315A5061227035 @default.
- W4206459315 hasAuthorship W4206459315A5066983807 @default.
- W4206459315 hasAuthorship W4206459315A5077851553 @default.
- W4206459315 hasAuthorship W4206459315A5080119870 @default.
- W4206459315 hasAuthorship W4206459315A5084093500 @default.
- W4206459315 hasBestOaLocation W42064593151 @default.
- W4206459315 hasConcept C117220453 @default.
- W4206459315 hasConcept C119857082 @default.
- W4206459315 hasConcept C121608353 @default.
- W4206459315 hasConcept C126322002 @default.
- W4206459315 hasConcept C153180895 @default.
- W4206459315 hasConcept C154945302 @default.
- W4206459315 hasConcept C2524010 @default.
- W4206459315 hasConcept C2777432617 @default.
- W4206459315 hasConcept C2778724333 @default.
- W4206459315 hasConcept C2780472235 @default.
- W4206459315 hasConcept C3018951153 @default.
- W4206459315 hasConcept C33923547 @default.
- W4206459315 hasConcept C41008148 @default.
- W4206459315 hasConcept C530470458 @default.
- W4206459315 hasConcept C71924100 @default.
- W4206459315 hasConcept C81363708 @default.
- W4206459315 hasConceptScore W4206459315C117220453 @default.
- W4206459315 hasConceptScore W4206459315C119857082 @default.
- W4206459315 hasConceptScore W4206459315C121608353 @default.
- W4206459315 hasConceptScore W4206459315C126322002 @default.
- W4206459315 hasConceptScore W4206459315C153180895 @default.
- W4206459315 hasConceptScore W4206459315C154945302 @default.
- W4206459315 hasConceptScore W4206459315C2524010 @default.
- W4206459315 hasConceptScore W4206459315C2777432617 @default.
- W4206459315 hasConceptScore W4206459315C2778724333 @default.
- W4206459315 hasConceptScore W4206459315C2780472235 @default.
- W4206459315 hasConceptScore W4206459315C3018951153 @default.
- W4206459315 hasConceptScore W4206459315C33923547 @default.
- W4206459315 hasConceptScore W4206459315C41008148 @default.
- W4206459315 hasConceptScore W4206459315C530470458 @default.
- W4206459315 hasConceptScore W4206459315C71924100 @default.
- W4206459315 hasConceptScore W4206459315C81363708 @default.
- W4206459315 hasFunder F4320320924 @default.
- W4206459315 hasIssue "1" @default.
- W4206459315 hasLocation W42064593151 @default.
- W4206459315 hasLocation W42064593152 @default.
- W4206459315 hasLocation W42064593153 @default.
- W4206459315 hasLocation W42064593154 @default.
- W4206459315 hasLocation W42064593155 @default.