Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206467407> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4206467407 endingPage "220" @default.
- W4206467407 startingPage "211" @default.
- W4206467407 abstract "AbstractCharacter recognition is the most challenging research topic due to its diverse applicable environment. Numerous research on Devanagari basic characters has been conducted, but due to difficulties associated, research on handwritten compound characters has received very little attention. The dilemma becomes much more complicated as a result of the different authors writing styles and moods. The traditional machine earning approach of character recognition focuses more on feature extraction, whereas the deep learning approach is a subset of machine learning that uses deep neural networks for learning. For current research work, we have created our own dataset for handwritten Devanagari compound characters. Our dataset has 5000 instances of 50 classes of compound characters collected from various writers of different age groups. This paper presents a convolutional neural network model for the recognition of Devanagari compound characters. We have implemented the ResNet model of CNN and used ReLu as an activation function as it effectively trains deep neural networks. We have implemented three-layer CNN, four-layer CNN, and five-layer CNN on our dataset, and its results are compared. We have achieved the highest accuracy of 100% on our dataset.KeywordsHandwritten character recognitionDevanagari compound charactersCNNResNetReLu" @default.
- W4206467407 created "2022-01-26" @default.
- W4206467407 creator A5020172537 @default.
- W4206467407 creator A5081875061 @default.
- W4206467407 date "2022-01-01" @default.
- W4206467407 modified "2023-09-23" @default.
- W4206467407 title "Handwritten Offline Devanagari Compound Character Recognition Using CNN" @default.
- W4206467407 cites W2194775991 @default.
- W4206467407 cites W2282186389 @default.
- W4206467407 cites W2793602411 @default.
- W4206467407 cites W2901614557 @default.
- W4206467407 cites W2901801548 @default.
- W4206467407 cites W3023012200 @default.
- W4206467407 cites W3035558131 @default.
- W4206467407 cites W3089007756 @default.
- W4206467407 cites W3134079985 @default.
- W4206467407 cites W755956977 @default.
- W4206467407 doi "https://doi.org/10.1007/978-981-16-6289-8_18" @default.
- W4206467407 hasPublicationYear "2022" @default.
- W4206467407 type Work @default.
- W4206467407 citedByCount "2" @default.
- W4206467407 countsByYear W42064674072022 @default.
- W4206467407 crossrefType "book-chapter" @default.
- W4206467407 hasAuthorship W4206467407A5020172537 @default.
- W4206467407 hasAuthorship W4206467407A5081875061 @default.
- W4206467407 hasConcept C108583219 @default.
- W4206467407 hasConcept C115961682 @default.
- W4206467407 hasConcept C138885662 @default.
- W4206467407 hasConcept C153180895 @default.
- W4206467407 hasConcept C154945302 @default.
- W4206467407 hasConcept C178790620 @default.
- W4206467407 hasConcept C185592680 @default.
- W4206467407 hasConcept C2524010 @default.
- W4206467407 hasConcept C2776401178 @default.
- W4206467407 hasConcept C2779227376 @default.
- W4206467407 hasConcept C2780144916 @default.
- W4206467407 hasConcept C2780861071 @default.
- W4206467407 hasConcept C28490314 @default.
- W4206467407 hasConcept C2987247673 @default.
- W4206467407 hasConcept C33923547 @default.
- W4206467407 hasConcept C41008148 @default.
- W4206467407 hasConcept C41895202 @default.
- W4206467407 hasConcept C50644808 @default.
- W4206467407 hasConcept C81363708 @default.
- W4206467407 hasConceptScore W4206467407C108583219 @default.
- W4206467407 hasConceptScore W4206467407C115961682 @default.
- W4206467407 hasConceptScore W4206467407C138885662 @default.
- W4206467407 hasConceptScore W4206467407C153180895 @default.
- W4206467407 hasConceptScore W4206467407C154945302 @default.
- W4206467407 hasConceptScore W4206467407C178790620 @default.
- W4206467407 hasConceptScore W4206467407C185592680 @default.
- W4206467407 hasConceptScore W4206467407C2524010 @default.
- W4206467407 hasConceptScore W4206467407C2776401178 @default.
- W4206467407 hasConceptScore W4206467407C2779227376 @default.
- W4206467407 hasConceptScore W4206467407C2780144916 @default.
- W4206467407 hasConceptScore W4206467407C2780861071 @default.
- W4206467407 hasConceptScore W4206467407C28490314 @default.
- W4206467407 hasConceptScore W4206467407C2987247673 @default.
- W4206467407 hasConceptScore W4206467407C33923547 @default.
- W4206467407 hasConceptScore W4206467407C41008148 @default.
- W4206467407 hasConceptScore W4206467407C41895202 @default.
- W4206467407 hasConceptScore W4206467407C50644808 @default.
- W4206467407 hasConceptScore W4206467407C81363708 @default.
- W4206467407 hasLocation W42064674071 @default.
- W4206467407 hasOpenAccess W4206467407 @default.
- W4206467407 hasPrimaryLocation W42064674071 @default.
- W4206467407 hasRelatedWork W2160069326 @default.
- W4206467407 hasRelatedWork W2732542196 @default.
- W4206467407 hasRelatedWork W2738221750 @default.
- W4206467407 hasRelatedWork W2760085659 @default.
- W4206467407 hasRelatedWork W2997872943 @default.
- W4206467407 hasRelatedWork W3156786002 @default.
- W4206467407 hasRelatedWork W3186111093 @default.
- W4206467407 hasRelatedWork W4214561993 @default.
- W4206467407 hasRelatedWork W564581980 @default.
- W4206467407 hasRelatedWork W2185993203 @default.
- W4206467407 isParatext "false" @default.
- W4206467407 isRetracted "false" @default.
- W4206467407 workType "book-chapter" @default.