Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206498981> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4206498981 endingPage "375" @default.
- W4206498981 startingPage "372" @default.
- W4206498981 abstract "No AccessEngineering NotesEffects of Stochastic Drag on Prediction Variance for Low Earth Orbit SatellitesEverett B. Palmer IV and William E. WieselEverett B. Palmer IV https://orcid.org/0000-0001-6220-2466Air Force Institute of Technology, Wright–Patterson Air Force Base, Ohio 45433*Department of Aeronautics and Astronautics.Search for more papers by this author and William E. WieselAir Force Institute of Technology, Wright–Patterson Air Force Base, Ohio 45433†Professor Emeritus of Astronautical Engineering, Department of Aeronautics and Astronautics.Search for more papers by this authorPublished Online:11 Jan 2022https://doi.org/10.2514/1.G005937SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Poore A. B., Aristoff J. M., Horwood J. T., Armellin R., Cerven W. T., Cheng Y., Cox C. M., Erwin R. S., Frisbee J. H., Hejduk M. D., Jones B. A., Di Lizia P., Scheeres D. J., Vallado D. A. and Weisman R. M., “Covariance and Uncertainty Realism in Space Surveillance and Tracking,” Tech. Rept. Numerica Corp., Fort Collins, CO, 2016. Google Scholar[2] Peterson G. E., Gist R. G. and Oltrogge D. L., “Covariance Generation for Space Objects Using Public Data,” 11th Annual AAS/AIAA Space Flight Mechanics Meeting, American Astronomical Soc., San Diego, CA, 2001, pp. 201–214. Google Scholar[3] Geul J., Mooij E. and Noomen R., “TLE Uncertainty Estimation Using Robust Weighted Differencing,” Advances in Space Research, Vol. 59, No. 10, 2017, pp. 2522–2535. https://doi.org/10.1016/j.asr.2017.02.038 CrossrefGoogle Scholar[4] Osweiler V. P., “Covariance Estimation and Autocorrelation of NORAD Two-Line Element Sets,” Master’s Thesis, Air Force Inst. of Technology, Wright–Patterson AFB, OH, 2006. Google Scholar[5] Rich A. T., Stuart K. J. and Wiesel W. E., “Stochastic Dynamics of and Collision Prediction for Low Altitude Earth Satellites,” Journal of the Astronautical Sciences, Vol. 65, No. 3, 2018, pp. 307–320. https://doi.org/10.1007/s40295-018-0129-9 CrossrefGoogle Scholar[6] Kelso T. S., “Validation of SGP4 and IS-GPS-200D Against GPS Precision Ephemerides,” 17th AAS/AIAA Spaceflight Mechanics Conference, American Astronomical Soc., San Diego, CA, 2007. Google Scholar[7] Hyeon-Jeong Y. and Dae-Won C., “Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element,” Journal of Astronomy and Space Science, Vol. 29, No. 3, 2012, pp. 287–293. https://doi.org/10.5140/JASS.2012.29.3.287 Google Scholar[8] Hesar S. G., Duncan M. and Pawloski J. H., “Realistic Covariance Generation for the GPM Spacecraft,” 2018 SpaceOps Conference, AIAA Paper 2018-2699, 2018. https://doi.org/10.2514/6.2018-2699 Google Scholar[9] Emmert J. T., Warren H. P., Segerman A. M., Byers J. M. and Picone J. M., “Propagation of Atmospheric Density Errors to Satellite Orbits,” Advances in Space Research, Vol. 59, No. 1, 2017, pp. 147–165. https://doi.org/10.1016/j.asr.2016.07.036 CrossrefGoogle Scholar[10] Schiemenz F., Utzmann J. and Kayal H., “Least Squares Orbit Estimation Including Atmospheric Density Uncertainty Consideration,” Advances in Space Research, Vol. 63, No. 12, 2019, pp. 3916–3935. https://doi.org/10.1016/j.asr.2019.02.039 CrossrefGoogle Scholar[11] Coppola V. T. and Tanygin S., “Using Bent Ellipsoids to Represent Large Position Covariance in Orbit Propagation,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1775–1784. https://doi.org/10.2514/1.G001011 LinkGoogle Scholar[12] Vallado D. A., Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press, Hawthorne, CA, 2013, p. 551. Google Scholar[13] Vallado D. A., Crawford P., Hujsak R. and Kelso T. S., “Revisiting Spacetrack Report #3,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2006-6753, 2006. https://doi.org/10.2514/6.2006-6753 Google Scholar[14] Anandakrishnan S. M. and Regan F. F., Dynamics of Atmospheric Re-Entry, AIAA, Reston, VA, 1993, pp. 537–540. Google Scholar[15] Lemoine F. G., Smith D. E., Kunz L., Smith R., Pavlis E. C., Pavlis N. K., Klosko S. M., Chinn D. S., Torrence M. H., Williamson R. G., Cox C. M., Rachlin K. E., Wang Y. M., Kenyon S. C., Salman R., Trimmer R., Rapp R. H. and Nerem R. S., “The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,” NASA Goddard Space Flight Center TR 206861, Greenbelt, MD, 1998. https://doi.org/10.1007/978-3-662-03482-8_62 Google Scholar[16] Picone J. M., Hedin A. E., Drob D. P. and Aikin A. C., “NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” Journal of Geophysical Research: Space Physics, Vol. 107, No. A12, 2002, pp. SIA–15. 10.1029/2002 JA009430 Google Scholar[17] Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., “The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008),” Journal of Geophysical Research, Vol. 117, No. B4, 2012, Paper B04406. 10.1029/2011 JB008916 CrossrefGoogle Scholar[18] Rothacher M., CHAMP Postprocessed Science Orbit for GPS and CHAMP, Information System and Data Center, GeoForschungszentrum Potsdam, Potsdam, Germany, 2000. https://doi.org/10.1594/GFZ.ISDC.CHAMP/CH-OG-4-PSO Google Scholar[19] Michalak G. and König R., Rapid Science Orbits for CHAMP and GRACE Radio Occultation Data Analysis, Springer, Berlin, 2010, pp. 67–77. https://doi.org/10.1007/978-3-642-10228-8_6 Google Scholar[20] Eckman R. A., Brown A. J., Adamo D. R. and Gottlieb R. G., “Normalization and Implementation of Three Gravitational Acceleration Models,” NASA Johnson Space Center TR 218604, Houston, TX, 2016. Google Scholar[21] Pines S., “Uniform Representation of the Gravitational Potential and its Derivatives,” AIAA Journal, Vol. 11, No. 11, 1973, pp. 1508–1511. https://doi.org/10.2514/3.50619 LinkGoogle Scholar[22] Casella G. and Berger R. L., Statistical Inference, 2nd ed., Duxbury Press, Duxbury, Australia, 2002, p. 170. Google Scholar[23] Acton C. H., “Ancillary Data Services of NASA’s Navigation and Ancillary Information Facility,” Planetary and Space Science, Vol. 44, No. 1, 1996, pp. 65–70. https://doi.org/10.1016/0032-0633(95)00107-7 CrossrefGoogle Scholar[24] Acton C., Bachman N., Semenov B. and Wright E., “A Look Toward the Future in the Handling of Space Science Mission Geometry,” Planetary and Space Science, Vol. 150, Jan. 2018, pp. 9–12. https://doi.org/10.1016/j.pss.2017.02.013 CrossrefGoogle Scholar[25] “Penticton Solar Radio Flux at 10.7 cm, Time Series,” Univ. of Colorado, 2020, http://lasp.colorado.edu/lisird/data/penticton_radio_flux/. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 2February 2022 CrossmarkInformationThis material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAstrodynamicsAstronauticsEarth Observation SatelliteOrbital ManeuversSatellitesSpace OrbitSpace Systems and VehiclesSpacecrafts KeywordsLow Earth Orbit SatellitesAtmospheric DragBallistic CoefficientEarthSolar ActivityPrecise Orbit DeterminationPerturbation TheoryEarth AtmosphereNumerical IntegrationSatellite ManeuversAcknowledgmentWe thank the anonymous reviewers for their insightful feedback. We also acknowledge that this research was funded by the Air Force Institute of Technology and accounts for part of Dr. Palmer’s Ph.D. Dissertation.PDF Received19 January 2021Accepted2 December 2021Published online11 January 2022" @default.
- W4206498981 created "2022-01-26" @default.
- W4206498981 creator A5001972844 @default.
- W4206498981 creator A5043317507 @default.
- W4206498981 date "2022-02-01" @default.
- W4206498981 modified "2023-10-16" @default.
- W4206498981 title "Effects of Stochastic Drag on Prediction Variance for Low Earth Orbit Satellites" @default.
- W4206498981 cites W2023893426 @default.
- W4206498981 cites W2053987409 @default.
- W4206498981 cites W2058388541 @default.
- W4206498981 cites W206985808 @default.
- W4206498981 cites W2119032654 @default.
- W4206498981 cites W2159009666 @default.
- W4206498981 cites W2528207832 @default.
- W4206498981 cites W2592625025 @default.
- W4206498981 cites W2594446720 @default.
- W4206498981 cites W2807824396 @default.
- W4206498981 cites W2922344256 @default.
- W4206498981 doi "https://doi.org/10.2514/1.g005937" @default.
- W4206498981 hasPublicationYear "2022" @default.
- W4206498981 type Work @default.
- W4206498981 citedByCount "0" @default.
- W4206498981 crossrefType "journal-article" @default.
- W4206498981 hasAuthorship W4206498981A5001972844 @default.
- W4206498981 hasAuthorship W4206498981A5043317507 @default.
- W4206498981 hasConcept C107768556 @default.
- W4206498981 hasConcept C121332964 @default.
- W4206498981 hasConcept C121955636 @default.
- W4206498981 hasConcept C127313418 @default.
- W4206498981 hasConcept C127413603 @default.
- W4206498981 hasConcept C1276947 @default.
- W4206498981 hasConcept C13280743 @default.
- W4206498981 hasConcept C146978453 @default.
- W4206498981 hasConcept C154978347 @default.
- W4206498981 hasConcept C162324750 @default.
- W4206498981 hasConcept C19269812 @default.
- W4206498981 hasConcept C196083921 @default.
- W4206498981 hasConcept C196644772 @default.
- W4206498981 hasConcept C3018325918 @default.
- W4206498981 hasConcept C33923547 @default.
- W4206498981 hasConcept C39432304 @default.
- W4206498981 hasConcept C57879066 @default.
- W4206498981 hasConcept C62649853 @default.
- W4206498981 hasConcept C72921944 @default.
- W4206498981 hasConceptScore W4206498981C107768556 @default.
- W4206498981 hasConceptScore W4206498981C121332964 @default.
- W4206498981 hasConceptScore W4206498981C121955636 @default.
- W4206498981 hasConceptScore W4206498981C127313418 @default.
- W4206498981 hasConceptScore W4206498981C127413603 @default.
- W4206498981 hasConceptScore W4206498981C1276947 @default.
- W4206498981 hasConceptScore W4206498981C13280743 @default.
- W4206498981 hasConceptScore W4206498981C146978453 @default.
- W4206498981 hasConceptScore W4206498981C154978347 @default.
- W4206498981 hasConceptScore W4206498981C162324750 @default.
- W4206498981 hasConceptScore W4206498981C19269812 @default.
- W4206498981 hasConceptScore W4206498981C196083921 @default.
- W4206498981 hasConceptScore W4206498981C196644772 @default.
- W4206498981 hasConceptScore W4206498981C3018325918 @default.
- W4206498981 hasConceptScore W4206498981C33923547 @default.
- W4206498981 hasConceptScore W4206498981C39432304 @default.
- W4206498981 hasConceptScore W4206498981C57879066 @default.
- W4206498981 hasConceptScore W4206498981C62649853 @default.
- W4206498981 hasConceptScore W4206498981C72921944 @default.
- W4206498981 hasFunder F4320338278 @default.
- W4206498981 hasIssue "2" @default.
- W4206498981 hasLocation W42064989811 @default.
- W4206498981 hasOpenAccess W4206498981 @default.
- W4206498981 hasPrimaryLocation W42064989811 @default.
- W4206498981 hasRelatedWork W1987421799 @default.
- W4206498981 hasRelatedWork W2050586028 @default.
- W4206498981 hasRelatedWork W2215536826 @default.
- W4206498981 hasRelatedWork W2358431995 @default.
- W4206498981 hasRelatedWork W2359489290 @default.
- W4206498981 hasRelatedWork W2370452453 @default.
- W4206498981 hasRelatedWork W2375155232 @default.
- W4206498981 hasRelatedWork W2391759637 @default.
- W4206498981 hasRelatedWork W2787082731 @default.
- W4206498981 hasRelatedWork W2995423162 @default.
- W4206498981 hasVolume "45" @default.
- W4206498981 isParatext "false" @default.
- W4206498981 isRetracted "false" @default.
- W4206498981 workType "article" @default.