Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206519694> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4206519694 endingPage "247" @default.
- W4206519694 startingPage "156" @default.
- W4206519694 abstract "In this chapter, univariate analysis of variance is extended to multivariate analysis of variance (MANOVA), in which several variables are measured on each experimental unit. For each case, the univariate analysis of variance is reviewed before extending to the corresponding multivariate analysis of variance. The basic multivariate models covered include the one-way model, the two-way model, higher order fixed effects models, mixed models, repeated measures designs, and growth curves. There are four commonly used test statistics in most MANOVA software: Wilks' Λ, Roy's θ, Pillai's V(s), and the Lawley–Hotelling statistic U(s). Wilks' Λ has many useful properties and is the most popular. Since exact p-values are not given in the program packages, tables for all four test statistics are provided in Appendix A so that an exact text can be made. The four test statistics have different power for different configurations of the population mean vectors. Measures of fit similar to R2 from multiple regression are given for the MANOVA model. Methods are given for checking on the assumptions of MANOVA for any given data set. Contrasts in means in the univariate case are extended to contrasts in mean vectors in the multivariate case. Various tests on individual variables are discussed for use following rejection of the multivariate hypothesis by any of the four tests. The two-sample profile analysis of Chapter 5 is extended to several (k) groups. The hypotheses are that the k profiles are (1) parallel, (2) all at the same level, and (3) flat. Repeated measures designs are covered up to a complexity level of two within-subjects factors and two between-subjects factors. Univariate and multivariate approaches to repeated measures are discussed, with the emphasis on the multivariate approach. Growth curves result when human or animal subjects respond to a treatment of stimulus at successive time periods. Polynomial curves are fit to the responses, and curves for different samples are compared. A subvector of variables can be tested for its contribution to Wilks' Λ. A subset of variables can be selected in a stepwise fashion. Numerical illustrations using real data are provided for most techniques covered in this chapter. The large problem set at the end of the chapter provides derivations of certain techniques in the chapter and further illustrates most techniques with real data." @default.
- W4206519694 created "2022-01-25" @default.
- W4206519694 date "2002-02-22" @default.
- W4206519694 modified "2023-10-17" @default.
- W4206519694 title "Multivariate Analysis of Variance" @default.
- W4206519694 doi "https://doi.org/10.1002/0471271357.ch6" @default.
- W4206519694 hasPublicationYear "2002" @default.
- W4206519694 type Work @default.
- W4206519694 citedByCount "4" @default.
- W4206519694 countsByYear W42065196942018 @default.
- W4206519694 countsByYear W42065196942019 @default.
- W4206519694 countsByYear W42065196942022 @default.
- W4206519694 crossrefType "other" @default.
- W4206519694 hasConcept C105795698 @default.
- W4206519694 hasConcept C121955636 @default.
- W4206519694 hasConcept C129848803 @default.
- W4206519694 hasConcept C144024400 @default.
- W4206519694 hasConcept C144133560 @default.
- W4206519694 hasConcept C149782125 @default.
- W4206519694 hasConcept C149923435 @default.
- W4206519694 hasConcept C152587130 @default.
- W4206519694 hasConcept C161584116 @default.
- W4206519694 hasConcept C192424360 @default.
- W4206519694 hasConcept C196083921 @default.
- W4206519694 hasConcept C199163554 @default.
- W4206519694 hasConcept C2908647359 @default.
- W4206519694 hasConcept C33923547 @default.
- W4206519694 hasConcept C38180746 @default.
- W4206519694 hasConcept C89128539 @default.
- W4206519694 hasConcept C99476002 @default.
- W4206519694 hasConceptScore W4206519694C105795698 @default.
- W4206519694 hasConceptScore W4206519694C121955636 @default.
- W4206519694 hasConceptScore W4206519694C129848803 @default.
- W4206519694 hasConceptScore W4206519694C144024400 @default.
- W4206519694 hasConceptScore W4206519694C144133560 @default.
- W4206519694 hasConceptScore W4206519694C149782125 @default.
- W4206519694 hasConceptScore W4206519694C149923435 @default.
- W4206519694 hasConceptScore W4206519694C152587130 @default.
- W4206519694 hasConceptScore W4206519694C161584116 @default.
- W4206519694 hasConceptScore W4206519694C192424360 @default.
- W4206519694 hasConceptScore W4206519694C196083921 @default.
- W4206519694 hasConceptScore W4206519694C199163554 @default.
- W4206519694 hasConceptScore W4206519694C2908647359 @default.
- W4206519694 hasConceptScore W4206519694C33923547 @default.
- W4206519694 hasConceptScore W4206519694C38180746 @default.
- W4206519694 hasConceptScore W4206519694C89128539 @default.
- W4206519694 hasConceptScore W4206519694C99476002 @default.
- W4206519694 hasLocation W42065196941 @default.
- W4206519694 hasOpenAccess W4206519694 @default.
- W4206519694 hasPrimaryLocation W42065196941 @default.
- W4206519694 hasRelatedWork W1514528489 @default.
- W4206519694 hasRelatedWork W15985269 @default.
- W4206519694 hasRelatedWork W181668615 @default.
- W4206519694 hasRelatedWork W2005115801 @default.
- W4206519694 hasRelatedWork W2099565054 @default.
- W4206519694 hasRelatedWork W2266707581 @default.
- W4206519694 hasRelatedWork W2795310587 @default.
- W4206519694 hasRelatedWork W282676322 @default.
- W4206519694 hasRelatedWork W3083070766 @default.
- W4206519694 hasRelatedWork W4385587228 @default.
- W4206519694 isParatext "false" @default.
- W4206519694 isRetracted "false" @default.
- W4206519694 workType "other" @default.