Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206537116> ?p ?o ?g. }
- W4206537116 endingPage "104" @default.
- W4206537116 startingPage "104" @default.
- W4206537116 abstract "The effect of four controllable input process parameters of AISI 4140 steel, cross-feed, workpiece velocity, wheel velocity, and the depth of cut were experimentally investigated under dry and wet conditions. Three responses, contact temperature, material removal rate (MRR), and machining cost during surface grinding of AISI 4140 steel, were considered. The process was optimized using a recently developed combined methodology based on response surface methodology (RSM) and desirability functional approach (DFA). RSM generated the models of the responses for prediction while DFA solved these multi-response optimization problems. The DFA approach employed an objective function known as the desirability function, which converts an estimated response into a scale-free value known as desirability. The optimum parameter was attained at the maximum overall desirability. An analysis of variance (ANOVA) was conducted to confirm the model adequacy. From the results of the study, for equal weights of responses, the corresponding optimal values of the input parameters cross-feed, workpiece velocity, the wheel or cutting velocity and the depth of cut were found to be 6 mm/pass, 12 m/min, 15 m/s, and 0.095 mm respectively in wet conditions. The corresponding predicted output responses were: 134.55 °C for the temperature, and 7.366 BDT (Taka, Currency of Bangladesh) for the total cost with an overall desirability of 0.844. Confirmation testing of optimized parameters, i.e., checking the validity of optimal set of predicted responses with the real experimental run were conducted, and it was found that the experimental value for temperature and total cost were 140.854 °C and 8.36 BDT, respectively, with an overall desirability of 0.863. Errors of the predicted value from the experimental value for equal weightage scheme were 4.47% for the temperature and 7.37% for the total cost. It was also found that if the temperature was prioritized, then the wet condition dominated the overall desirability, which was expected. However, if the cost was given high weightage, dry condition achieved the highest overall desirability. This can be attributed to the cutting in the wet condition which was more expensive due to the application of cutting fluid. The proposed model was found to be new and highly flexible in the sense that there was always an option at hand to focus on a particular response if needed." @default.
- W4206537116 created "2022-01-25" @default.
- W4206537116 creator A5000415956 @default.
- W4206537116 creator A5003508657 @default.
- W4206537116 creator A5006178080 @default.
- W4206537116 creator A5012084153 @default.
- W4206537116 creator A5015337167 @default.
- W4206537116 creator A5029052255 @default.
- W4206537116 creator A5059897353 @default.
- W4206537116 creator A5064553217 @default.
- W4206537116 date "2022-01-17" @default.
- W4206537116 modified "2023-10-13" @default.
- W4206537116 title "Multi-Response Optimization of Surface Grinding Process Parameters of AISI 4140 Alloy Steel Using Response Surface Methodology and Desirability Function under Dry and Wet Conditions" @default.
- W4206537116 cites W1182858833 @default.
- W4206537116 cites W1541932744 @default.
- W4206537116 cites W1965093432 @default.
- W4206537116 cites W1966177605 @default.
- W4206537116 cites W1968098666 @default.
- W4206537116 cites W1972317564 @default.
- W4206537116 cites W1974840468 @default.
- W4206537116 cites W1980333584 @default.
- W4206537116 cites W2003089108 @default.
- W4206537116 cites W2006481573 @default.
- W4206537116 cites W2009599321 @default.
- W4206537116 cites W2017592758 @default.
- W4206537116 cites W2022232697 @default.
- W4206537116 cites W2035508782 @default.
- W4206537116 cites W2043866638 @default.
- W4206537116 cites W2049624247 @default.
- W4206537116 cites W2053299397 @default.
- W4206537116 cites W2053466603 @default.
- W4206537116 cites W2057841313 @default.
- W4206537116 cites W2060993074 @default.
- W4206537116 cites W2081664098 @default.
- W4206537116 cites W2093501612 @default.
- W4206537116 cites W2095943453 @default.
- W4206537116 cites W2156525108 @default.
- W4206537116 cites W2344646906 @default.
- W4206537116 cites W2552636173 @default.
- W4206537116 cites W2620745377 @default.
- W4206537116 cites W2624241116 @default.
- W4206537116 cites W2790011622 @default.
- W4206537116 cites W2901318277 @default.
- W4206537116 cites W2901610845 @default.
- W4206537116 cites W2943790258 @default.
- W4206537116 cites W2947546953 @default.
- W4206537116 cites W2965131764 @default.
- W4206537116 cites W2994864529 @default.
- W4206537116 cites W2996695035 @default.
- W4206537116 cites W3020020246 @default.
- W4206537116 cites W3024039786 @default.
- W4206537116 cites W3038844297 @default.
- W4206537116 cites W3192687434 @default.
- W4206537116 cites W4253366717 @default.
- W4206537116 cites W4297845997 @default.
- W4206537116 cites W2088568645 @default.
- W4206537116 doi "https://doi.org/10.3390/coatings12010104" @default.
- W4206537116 hasPublicationYear "2022" @default.
- W4206537116 type Work @default.
- W4206537116 citedByCount "9" @default.
- W4206537116 countsByYear W42065371162022 @default.
- W4206537116 countsByYear W42065371162023 @default.
- W4206537116 crossrefType "journal-article" @default.
- W4206537116 hasAuthorship W4206537116A5000415956 @default.
- W4206537116 hasAuthorship W4206537116A5003508657 @default.
- W4206537116 hasAuthorship W4206537116A5006178080 @default.
- W4206537116 hasAuthorship W4206537116A5012084153 @default.
- W4206537116 hasAuthorship W4206537116A5015337167 @default.
- W4206537116 hasAuthorship W4206537116A5029052255 @default.
- W4206537116 hasAuthorship W4206537116A5059897353 @default.
- W4206537116 hasAuthorship W4206537116A5064553217 @default.
- W4206537116 hasBestOaLocation W42065371161 @default.
- W4206537116 hasConcept C105795698 @default.
- W4206537116 hasConcept C14036430 @default.
- W4206537116 hasConcept C150077022 @default.
- W4206537116 hasConcept C191897082 @default.
- W4206537116 hasConcept C192562407 @default.
- W4206537116 hasConcept C2777571299 @default.
- W4206537116 hasConcept C2777771575 @default.
- W4206537116 hasConcept C2780026712 @default.
- W4206537116 hasConcept C33923547 @default.
- W4206537116 hasConcept C34559072 @default.
- W4206537116 hasConcept C523214423 @default.
- W4206537116 hasConcept C78458016 @default.
- W4206537116 hasConcept C86803240 @default.
- W4206537116 hasConceptScore W4206537116C105795698 @default.
- W4206537116 hasConceptScore W4206537116C14036430 @default.
- W4206537116 hasConceptScore W4206537116C150077022 @default.
- W4206537116 hasConceptScore W4206537116C191897082 @default.
- W4206537116 hasConceptScore W4206537116C192562407 @default.
- W4206537116 hasConceptScore W4206537116C2777571299 @default.
- W4206537116 hasConceptScore W4206537116C2777771575 @default.
- W4206537116 hasConceptScore W4206537116C2780026712 @default.
- W4206537116 hasConceptScore W4206537116C33923547 @default.
- W4206537116 hasConceptScore W4206537116C34559072 @default.
- W4206537116 hasConceptScore W4206537116C523214423 @default.
- W4206537116 hasConceptScore W4206537116C78458016 @default.
- W4206537116 hasConceptScore W4206537116C86803240 @default.