Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206545219> ?p ?o ?g. }
- W4206545219 endingPage "8" @default.
- W4206545219 startingPage "1" @default.
- W4206545219 abstract "Since the Pre-Roman era, olive trees have a significant economic and cultural value. In 2019, the Al-Jouf region, in the north of the Kingdom of Saudi Arabia, gained a global presence by entering the Guinness World Records, with the largest number of olive trees in the world. Olive tree detecting and counting from a given satellite image are a significant and difficult computer vision problem. Because olive farms are spread out over a large area, manually counting the trees is impossible. Moreover, accurate automatic detection and counting of olive trees in satellite images have many challenges such as scale variations, weather changes, perspective distortions, and orientation changes. Another problem is the lack of a standard database of olive trees available for deep learning applications. To address these problems, we first build a large-scale olive dataset dedicated to deep learning research and applications. The dataset consists of 230 RGB images collected over the territory of Al-Jouf, KSA. We then propose an efficient deep learning model (SwinTUnet) for detecting and counting olive trees from satellite imagery. The proposed SwinTUnet is a Unet-like network which consists of an encoder, a decoder, and skip connections. Swin Transformer block is the fundamental unit of SwinTUnet to learn local and global semantic information. The results of an experimental study on the proposed dataset show that the SwinTUnet model outperforms the related studies in terms of overall detection with a 0.94% estimation error." @default.
- W4206545219 created "2022-01-26" @default.
- W4206545219 creator A5008352499 @default.
- W4206545219 creator A5010509801 @default.
- W4206545219 creator A5054919238 @default.
- W4206545219 creator A5059000761 @default.
- W4206545219 creator A5075264815 @default.
- W4206545219 date "2022-01-15" @default.
- W4206545219 modified "2023-09-26" @default.
- W4206545219 title "A Large-Scale Dataset and Deep Learning Model for Detecting and Counting Olive Trees in Satellite Imagery" @default.
- W4206545219 cites W1524002129 @default.
- W4206545219 cites W1806052388 @default.
- W4206545219 cites W1901129140 @default.
- W4206545219 cites W2076347053 @default.
- W4206545219 cites W2108598243 @default.
- W4206545219 cites W2135557381 @default.
- W4206545219 cites W2138069974 @default.
- W4206545219 cites W2161969291 @default.
- W4206545219 cites W2168676212 @default.
- W4206545219 cites W2342299051 @default.
- W4206545219 cites W2767410253 @default.
- W4206545219 cites W2903436401 @default.
- W4206545219 cites W2964080601 @default.
- W4206545219 cites W2983446232 @default.
- W4206545219 cites W3007732880 @default.
- W4206545219 cites W3033460776 @default.
- W4206545219 cites W3089024309 @default.
- W4206545219 cites W3106250896 @default.
- W4206545219 cites W4214634256 @default.
- W4206545219 doi "https://doi.org/10.1155/2022/1549842" @default.
- W4206545219 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35075356" @default.
- W4206545219 hasPublicationYear "2022" @default.
- W4206545219 type Work @default.
- W4206545219 citedByCount "7" @default.
- W4206545219 countsByYear W42065452192022 @default.
- W4206545219 countsByYear W42065452192023 @default.
- W4206545219 crossrefType "journal-article" @default.
- W4206545219 hasAuthorship W4206545219A5008352499 @default.
- W4206545219 hasAuthorship W4206545219A5010509801 @default.
- W4206545219 hasAuthorship W4206545219A5054919238 @default.
- W4206545219 hasAuthorship W4206545219A5059000761 @default.
- W4206545219 hasAuthorship W4206545219A5075264815 @default.
- W4206545219 hasBestOaLocation W42065452191 @default.
- W4206545219 hasConcept C108583219 @default.
- W4206545219 hasConcept C113174947 @default.
- W4206545219 hasConcept C119857082 @default.
- W4206545219 hasConcept C134306372 @default.
- W4206545219 hasConcept C144027150 @default.
- W4206545219 hasConcept C154945302 @default.
- W4206545219 hasConcept C205649164 @default.
- W4206545219 hasConcept C2524010 @default.
- W4206545219 hasConcept C2777210771 @default.
- W4206545219 hasConcept C2778102629 @default.
- W4206545219 hasConcept C2778755073 @default.
- W4206545219 hasConcept C2992859235 @default.
- W4206545219 hasConcept C33923547 @default.
- W4206545219 hasConcept C41008148 @default.
- W4206545219 hasConcept C50644808 @default.
- W4206545219 hasConcept C58640448 @default.
- W4206545219 hasConcept C62649853 @default.
- W4206545219 hasConcept C86803240 @default.
- W4206545219 hasConceptScore W4206545219C108583219 @default.
- W4206545219 hasConceptScore W4206545219C113174947 @default.
- W4206545219 hasConceptScore W4206545219C119857082 @default.
- W4206545219 hasConceptScore W4206545219C134306372 @default.
- W4206545219 hasConceptScore W4206545219C144027150 @default.
- W4206545219 hasConceptScore W4206545219C154945302 @default.
- W4206545219 hasConceptScore W4206545219C205649164 @default.
- W4206545219 hasConceptScore W4206545219C2524010 @default.
- W4206545219 hasConceptScore W4206545219C2777210771 @default.
- W4206545219 hasConceptScore W4206545219C2778102629 @default.
- W4206545219 hasConceptScore W4206545219C2778755073 @default.
- W4206545219 hasConceptScore W4206545219C2992859235 @default.
- W4206545219 hasConceptScore W4206545219C33923547 @default.
- W4206545219 hasConceptScore W4206545219C41008148 @default.
- W4206545219 hasConceptScore W4206545219C50644808 @default.
- W4206545219 hasConceptScore W4206545219C58640448 @default.
- W4206545219 hasConceptScore W4206545219C62649853 @default.
- W4206545219 hasConceptScore W4206545219C86803240 @default.
- W4206545219 hasFunder F4320324554 @default.
- W4206545219 hasLocation W42065452191 @default.
- W4206545219 hasLocation W42065452192 @default.
- W4206545219 hasLocation W42065452193 @default.
- W4206545219 hasLocation W42065452194 @default.
- W4206545219 hasOpenAccess W4206545219 @default.
- W4206545219 hasPrimaryLocation W42065452191 @default.
- W4206545219 hasRelatedWork W2795261237 @default.
- W4206545219 hasRelatedWork W3014300295 @default.
- W4206545219 hasRelatedWork W3164822677 @default.
- W4206545219 hasRelatedWork W4223943233 @default.
- W4206545219 hasRelatedWork W4225161397 @default.
- W4206545219 hasRelatedWork W4312200629 @default.
- W4206545219 hasRelatedWork W4360585206 @default.
- W4206545219 hasRelatedWork W4364306694 @default.
- W4206545219 hasRelatedWork W4380075502 @default.
- W4206545219 hasRelatedWork W4380086463 @default.
- W4206545219 hasVolume "2022" @default.
- W4206545219 isParatext "false" @default.