Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206549407> ?p ?o ?g. }
- W4206549407 endingPage "446" @default.
- W4206549407 startingPage "446" @default.
- W4206549407 abstract "Recently, 3D point clouds have become a quasi-standard for digitization. Point cloud processing remains a challenge due to the complex and unstructured nature of point clouds. Currently, most automatic point cloud segmentation methods are data-based and gain knowledge from manually segmented ground truth (GT) point clouds. The creation of GT point clouds by capturing data with an optical sensor and then performing a manual or semi-automatic segmentation is a less studied research field. Usually, GT point clouds are semantically segmented only once and considered to be free of semantic errors. In this work, it is shown that this assumption has no overall validity if the reality is to be represented by a semantic point cloud. Our quality model has been developed to describe and evaluate semantic GT point clouds and their manual creation processes. It is applied on our dataset and publicly available point cloud datasets. Furthermore, we believe that this quality model contributes to the objective evaluation and comparability of data-based segmentation algorithms." @default.
- W4206549407 created "2022-01-26" @default.
- W4206549407 creator A5018533453 @default.
- W4206549407 creator A5074278845 @default.
- W4206549407 date "2022-01-18" @default.
- W4206549407 modified "2023-10-14" @default.
- W4206549407 title "Evaluating the Quality of Semantic Segmented 3D Point Clouds" @default.
- W4206549407 cites W1751162681 @default.
- W4206549407 cites W1920022804 @default.
- W4206549407 cites W1977402957 @default.
- W4206549407 cites W1999478155 @default.
- W4206549407 cites W2031342017 @default.
- W4206549407 cites W2046689939 @default.
- W4206549407 cites W2086469977 @default.
- W4206549407 cites W2102381086 @default.
- W4206549407 cites W2121535648 @default.
- W4206549407 cites W2211722331 @default.
- W4206549407 cites W2230170002 @default.
- W4206549407 cites W2342620830 @default.
- W4206549407 cites W2460657278 @default.
- W4206549407 cites W2467184210 @default.
- W4206549407 cites W2518003110 @default.
- W4206549407 cites W2535415804 @default.
- W4206549407 cites W2560609797 @default.
- W4206549407 cites W2563685048 @default.
- W4206549407 cites W2594519801 @default.
- W4206549407 cites W2604137468 @default.
- W4206549407 cites W2754971880 @default.
- W4206549407 cites W2792769060 @default.
- W4206549407 cites W2800336479 @default.
- W4206549407 cites W2805292526 @default.
- W4206549407 cites W2849832230 @default.
- W4206549407 cites W2891649842 @default.
- W4206549407 cites W2944276331 @default.
- W4206549407 cites W2954563896 @default.
- W4206549407 cites W2962771259 @default.
- W4206549407 cites W2963706542 @default.
- W4206549407 cites W2964257316 @default.
- W4206549407 cites W2964339842 @default.
- W4206549407 cites W2967506468 @default.
- W4206549407 cites W2970446691 @default.
- W4206549407 cites W2970938561 @default.
- W4206549407 cites W2971142047 @default.
- W4206549407 cites W2973640182 @default.
- W4206549407 cites W2976081675 @default.
- W4206549407 cites W2980109758 @default.
- W4206549407 cites W2981440248 @default.
- W4206549407 cites W2982486049 @default.
- W4206549407 cites W2989341556 @default.
- W4206549407 cites W3011788244 @default.
- W4206549407 cites W3020939490 @default.
- W4206549407 cites W3031288689 @default.
- W4206549407 cites W3034442687 @default.
- W4206549407 cites W3036259090 @default.
- W4206549407 cites W3047451521 @default.
- W4206549407 cites W3048006317 @default.
- W4206549407 cites W3048038848 @default.
- W4206549407 cites W3103830808 @default.
- W4206549407 cites W3104038589 @default.
- W4206549407 cites W3110852870 @default.
- W4206549407 cites W3116493117 @default.
- W4206549407 cites W3119523940 @default.
- W4206549407 cites W3124372372 @default.
- W4206549407 cites W3127746857 @default.
- W4206549407 cites W3128130978 @default.
- W4206549407 cites W3134558160 @default.
- W4206549407 cites W3157442980 @default.
- W4206549407 cites W3212207495 @default.
- W4206549407 cites W3217436140 @default.
- W4206549407 cites W4205104450 @default.
- W4206549407 cites W4213215721 @default.
- W4206549407 cites W4235587621 @default.
- W4206549407 cites W4241984689 @default.
- W4206549407 doi "https://doi.org/10.3390/rs14030446" @default.
- W4206549407 hasPublicationYear "2022" @default.
- W4206549407 type Work @default.
- W4206549407 citedByCount "3" @default.
- W4206549407 countsByYear W42065494072023 @default.
- W4206549407 crossrefType "journal-article" @default.
- W4206549407 hasAuthorship W4206549407A5018533453 @default.
- W4206549407 hasAuthorship W4206549407A5074278845 @default.
- W4206549407 hasBestOaLocation W42065494071 @default.
- W4206549407 hasConcept C114614502 @default.
- W4206549407 hasConcept C124101348 @default.
- W4206549407 hasConcept C131979681 @default.
- W4206549407 hasConcept C146849305 @default.
- W4206549407 hasConcept C154945302 @default.
- W4206549407 hasConcept C197947376 @default.
- W4206549407 hasConcept C202444582 @default.
- W4206549407 hasConcept C23123220 @default.
- W4206549407 hasConcept C2524010 @default.
- W4206549407 hasConcept C2779308522 @default.
- W4206549407 hasConcept C28719098 @default.
- W4206549407 hasConcept C31972630 @default.
- W4206549407 hasConcept C33923547 @default.
- W4206549407 hasConcept C41008148 @default.
- W4206549407 hasConcept C89600930 @default.
- W4206549407 hasConcept C9652623 @default.