Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206564404> ?p ?o ?g. }
- W4206564404 endingPage "1704" @default.
- W4206564404 startingPage "1691" @default.
- W4206564404 abstract "Musculoskeletal robot with high precision and robustness is a promising direction for the next generation of robots. However, motion learning and rapid generalization of complex musculoskeletal systems are still challenging. Therefore, inspired by the movement preparation mechanism of the motor cortex, this article proposes a motion learning framework based on the recurrent neural network (RNN) modulated by initial states. First, two RNNs are introduced as a preparation network and an execution network to generate initial states of the execution network and time-varying motor commands of movement, respectively. The preparation network is trained by a reward-modulated learning rule, and the execution network is fixed. With the modulation of initial states, initial states can be explicitly expressed as knowledge of movements. By dividing the preparation and execution of movements into two RNNs, the motion learning is accelerated to converge under the application of the node-perturbation method. Second, with the utilization of learned initial states, a rapid generalization method for new movement targets is proposed. Initial states of unlearned movements can be computed by searching for low-dimensional ones in latent space constructed by learned initial states and then transforming them into the whole neural space. The proposed framework is verified in simulation with a musculoskeletal model. The results indicate that the proposed motion learning framework can realize goal-oriented movements of the musculoskeletal system with high precision and significantly improve the generalization efficiency for new movements." @default.
- W4206564404 created "2022-01-25" @default.
- W4206564404 creator A5026688050 @default.
- W4206564404 creator A5074628946 @default.
- W4206564404 creator A5081627187 @default.
- W4206564404 date "2022-12-01" @default.
- W4206564404 modified "2023-10-16" @default.
- W4206564404 title "Motion Learning and Rapid Generalization for Musculoskeletal Systems Based on Recurrent Neural Network Modulated by Initial States" @default.
- W4206564404 cites W1779938893 @default.
- W4206564404 cites W1969816573 @default.
- W4206564404 cites W1972837991 @default.
- W4206564404 cites W1974803102 @default.
- W4206564404 cites W1979826626 @default.
- W4206564404 cites W1983573550 @default.
- W4206564404 cites W1993841629 @default.
- W4206564404 cites W2000186054 @default.
- W4206564404 cites W2029053566 @default.
- W4206564404 cites W2030092661 @default.
- W4206564404 cites W2040499723 @default.
- W4206564404 cites W2041176801 @default.
- W4206564404 cites W2067690526 @default.
- W4206564404 cites W2070510586 @default.
- W4206564404 cites W2075861930 @default.
- W4206564404 cites W2097263684 @default.
- W4206564404 cites W2101677491 @default.
- W4206564404 cites W2103756351 @default.
- W4206564404 cites W2112595261 @default.
- W4206564404 cites W2116740732 @default.
- W4206564404 cites W2117268954 @default.
- W4206564404 cites W2119796324 @default.
- W4206564404 cites W2135993484 @default.
- W4206564404 cites W2141943257 @default.
- W4206564404 cites W2151906934 @default.
- W4206564404 cites W2164535356 @default.
- W4206564404 cites W2165150869 @default.
- W4206564404 cites W2519125098 @default.
- W4206564404 cites W2543770555 @default.
- W4206564404 cites W2569517946 @default.
- W4206564404 cites W2725150524 @default.
- W4206564404 cites W2777101122 @default.
- W4206564404 cites W2787262037 @default.
- W4206564404 cites W2791542133 @default.
- W4206564404 cites W2883972132 @default.
- W4206564404 cites W2891765131 @default.
- W4206564404 cites W2908457428 @default.
- W4206564404 cites W2953293408 @default.
- W4206564404 cites W2961252812 @default.
- W4206564404 cites W2972324216 @default.
- W4206564404 cites W2972778642 @default.
- W4206564404 cites W2983424251 @default.
- W4206564404 cites W2995822731 @default.
- W4206564404 cites W3003820461 @default.
- W4206564404 cites W3008806548 @default.
- W4206564404 cites W3017424189 @default.
- W4206564404 cites W3094210481 @default.
- W4206564404 cites W3125795670 @default.
- W4206564404 cites W3137335329 @default.
- W4206564404 cites W3144044361 @default.
- W4206564404 cites W3162722130 @default.
- W4206564404 cites W2031474781 @default.
- W4206564404 doi "https://doi.org/10.1109/tcds.2021.3136854" @default.
- W4206564404 hasPublicationYear "2022" @default.
- W4206564404 type Work @default.
- W4206564404 citedByCount "2" @default.
- W4206564404 countsByYear W42065644042022 @default.
- W4206564404 countsByYear W42065644042023 @default.
- W4206564404 crossrefType "journal-article" @default.
- W4206564404 hasAuthorship W4206564404A5026688050 @default.
- W4206564404 hasAuthorship W4206564404A5074628946 @default.
- W4206564404 hasAuthorship W4206564404A5081627187 @default.
- W4206564404 hasConcept C104114177 @default.
- W4206564404 hasConcept C104317684 @default.
- W4206564404 hasConcept C119857082 @default.
- W4206564404 hasConcept C134306372 @default.
- W4206564404 hasConcept C147168706 @default.
- W4206564404 hasConcept C154945302 @default.
- W4206564404 hasConcept C177148314 @default.
- W4206564404 hasConcept C185592680 @default.
- W4206564404 hasConcept C33923547 @default.
- W4206564404 hasConcept C41008148 @default.
- W4206564404 hasConcept C50644808 @default.
- W4206564404 hasConcept C55493867 @default.
- W4206564404 hasConcept C63479239 @default.
- W4206564404 hasConcept C90509273 @default.
- W4206564404 hasConceptScore W4206564404C104114177 @default.
- W4206564404 hasConceptScore W4206564404C104317684 @default.
- W4206564404 hasConceptScore W4206564404C119857082 @default.
- W4206564404 hasConceptScore W4206564404C134306372 @default.
- W4206564404 hasConceptScore W4206564404C147168706 @default.
- W4206564404 hasConceptScore W4206564404C154945302 @default.
- W4206564404 hasConceptScore W4206564404C177148314 @default.
- W4206564404 hasConceptScore W4206564404C185592680 @default.
- W4206564404 hasConceptScore W4206564404C33923547 @default.
- W4206564404 hasConceptScore W4206564404C41008148 @default.
- W4206564404 hasConceptScore W4206564404C50644808 @default.
- W4206564404 hasConceptScore W4206564404C55493867 @default.
- W4206564404 hasConceptScore W4206564404C63479239 @default.
- W4206564404 hasConceptScore W4206564404C90509273 @default.