Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206591272> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4206591272 endingPage "520" @default.
- W4206591272 startingPage "515" @default.
- W4206591272 abstract "Free Access References Ahmed A. Shabana, Ahmed A. Shabana Richard and Loan Hill Professor of Engineering, University of Illinois at Chicago, USASearch for more papers by this author Book Author(s):Ahmed A. Shabana, Ahmed A. Shabana Richard and Loan Hill Professor of Engineering, University of Illinois at Chicago, USASearch for more papers by this author First published: 04 December 2009 https://doi.org/10.1002/9780470686850.refsCitations: 1 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Citing Literature REFERENCES Ambrosio, J. A. C., and Gonclaves, J. P. C., “Complex Flexible Multibody Systems with Application to Vehicle Dynamics,” Multibody System Dynamics, vol. 6, 2001, pp. 163– 182. CrossrefWeb of Science®Google Scholar Anderson, K. S., and Duan, S. Z., “Highly Parallel Algorithm for Motion Simulation of Complex Multi-Rigid-Body Mechanical Systems,” AIAA Journal of Guidance, Control and Dynamics, vol. 23, 2000, pp. 355– 364. CrossrefWeb of Science®Google Scholar Andriacchi, T. P., and Alexander, E. J., “Studies of Human Locomotion: Past, Present and Future,” Journal of Biomechanics, vol. 33, 2000, pp. 1217– 1224. CrossrefCASPubMedWeb of Science®Google Scholar Arczewski, K., and Blajer, W., “A Unified Approach to the Modelling of Holonomic and Nonholonomic Mechanical Systems,” Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, vol. 2, 1996, pp. 157– 174. CrossrefGoogle Scholar Arnold, M., and Bruls, O., “Convergence of the Generalized-α Scheme for Constrained Mechanical Systems,” Multibody System Dynamics, vol. 18, 2007, pp. 185– 202. CrossrefWeb of Science®Google Scholar Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley & Sons, 1978. Google Scholar Bae, D. S., Han, J. M., Choi, J. H., and Yang, S. M., “A generalized Recursive Formulation for Constrained Flexible Multibody Dynamics,” International Journal for Numerical Methods in Engineering, vol. 50, 2001, pp. 1841– 1859. Wiley Online LibraryWeb of Science®Google Scholar Barhorst, A. A., and Everett, L. J., “Modeling Hybrid Parameter Multiple Body Systems: A Different Approach,” International Journal of Nonlinear Mechanics, vol. 30, 1995, pp. 1– 21. CrossrefWeb of Science®Google Scholar Bauchau, O. A., and Rodriguez, J., “Modeling of Joints with Clearance in Flexible Multibody Systems,” International Journal of Solids and Structures, vol. 39, 2002, pp. 41– 63. CrossrefWeb of Science®Google Scholar Bae, D. S., Lee, J. K., Cho, H. J., and Yae, H., “An Explicit Integration Method for Realtime Simulation of Multibody Vehicle Models,” Computer Methods in Applied Mechanics and Engineering, vol. 187, 2000, pp. 337– 350. CrossrefWeb of Science®Google Scholar Bayo, E., García de Jalón, J., and Serna, M. A., “A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems,” Computer Methods in Applied Mechanics and Engineering, vol. 71, 1988, pp. 183– 195. CrossrefWeb of Science®Google Scholar Berbyuk, V., “Towards Dynamics of Controlled Multibody Systems with Magnetostrictive Transducers,” Multibody System Dynamics, vol. 18, 2007, pp. 203– 216. CrossrefWeb of Science®Google Scholar Blajer, W., “A Projection Method Approach to Constrained Dynamic Analysis,” Journal of Applied Mechanics, vol. 59, 1991, pp. 643– 649. CrossrefWeb of Science®Google Scholar Blajer, W., “A Geometric Unification of Constrained System Dynamics,” Multibody System Dynamics, vol. 1, 1997, pp. 3– 21. CrossrefGoogle Scholar Borri, M., Bottasso, C. L., and Trainelli, L., “Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms, I. Formulation,” Computer Methods in Applied Mechanics and Engineering, vol. 190, 2001, pp. 3669– 3699. CrossrefWeb of Science®Google Scholar Bottasso, C. L., Borri, M., and Trainelli, L., “Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms, II. Numerical Schemes and Applications,” Computer Methods in Applied Mechanics and Engineering, vol. 190, 2001, pp. 3701– 3733. CrossrefWeb of Science®Google Scholar Brul, O., and Eberhard, P., “Sensitivity Analysis for Dynamic Mechanical Systems with Finite Rotations,” International Journal for Numerical Methods in Engineering, vol. 74, 2007, pp. 1897– 1927. Wiley Online LibraryWeb of Science®Google Scholar Chen, K., and Beale, D., “A New Method to Determine the Base Inertial Parameters of Planar Mechanisms,” Mechanism and Machine Theory, vol. 39, no. 9, 2002, pp. 971– 984. CrossrefWeb of Science®Google Scholar Choi, J. H., Shabana, A. A., and Wehage, R. A., “Propagation of Nonlinearities in the Inertia Matrix of Tracked vehicles”, Technical Report prepared for the U.S. Army Tank Automotive Command, TCN 93097, August 1993. Google Scholar Cuadrado, J., Gutierrez, R., Naya, M. A., and Gonzalez, M., “Experimental Validation of a Flexible MBS Dynamic Formulation through Comparison between Measured and Calculated Stresses on a Prototype Car,” Multibody System Dynamics, vol. 11, 2004, pp. 147– 166. CrossrefWeb of Science®Google Scholar Eberhard, P., and Schiehlen, W., “Hierarchical Modeling in Multibody Dynamics,” Archive of Applied Mechanics, vol. 68, 1998, pp. 237– 246. CrossrefWeb of Science®Google Scholar Garcia de Jalon, J., and Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems, Springer-Verlag, New York, 1993. Google Scholar Ginsberg, J., Engineering Dynamics, Cambridge University Press, New York, 2008. Google Scholar Goldstein, H., Classical Mechanics, Addison-Wesley, 1950. Google Scholar Greenwood, D. T., Principles of Dynamics, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1988. Google Scholar Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston, MA, 1989. Google Scholar Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, vol. 5, 1977, pp. 283– 292. Wiley Online LibraryWeb of Science®Google Scholar Hilber, M., and Kecskemethy, A, “A Computer-oriented Approach for the Automatic Generation and Solution of the Equations of Motion for Complex Mechanisms”, Proceedings of the 7th IFFTOMM World Congress on the Theory of Machines and Mechanisms, Selvia, 1987. Google Scholar Hussein, B., Negrut, D., and Shabana, A. A., “Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations,” Nonlinear Dynamics, vol. 54, no. 4, 2008, pp. 283– 296. CrossrefWeb of Science®Google Scholar Huston, R. L., Multibody Dynamics, Butterworth-Heinemann, Stoneham, MA, 1990. Google Scholar Kaplan, W., Advanced Calculus, 4th ed., Addison-Wesley, Reading, MA, 1991. Google Scholar Khulief, Y. A., and Shabana, A. A., “A Continuous Force Model for the Impact Analysis of Flexible Multi-Body Systems,” Mechanism and Machine Theory, vol. 22, no. 3, 1987, pp. 213– 224. CrossrefWeb of Science®Google Scholar Kim, S. S., and Vanderploeg, M. J., “QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, vol. 108, 1986, pp. 183– 188. CrossrefWeb of Science®Google Scholar Kovecses, J., and Angeles, J., “The Stiffness Matrix in Elastically Articulated Rigid-Body Systems,” Multibody System Dynamics, vol. 18, 2007, pp. 169– 184. CrossrefWeb of Science®Google Scholar Lankrani, H. M., “A Poisson-Based Formulation for Frictional Impact Analysis of Multibody Mechanical Systems With Open or Closed Kinematic Chains,” Journal of Mechanical Design, vol. 122, 2000, pp. 489– 497. CrossrefWeb of Science®Google Scholar Leamy, M. J., and Wasfy, T. M., “Analysis of Belt-Driven Mechanics Using a Creep-Rate-Dependent Friction Law,” Journal of Applied Mechanics, vol. 69, 2002, pp. 763– 771. CrossrefWeb of Science®Google Scholar Litvin, F. L., Gear Geometry and Applied Theory, Prentice Hall, Englewood Cliffs, NJ, 1994. Google Scholar Mani, N. K., Haug, E. J., and Atkinson, K. E., “Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, vol. 107, 1985, pp. 82– 87. CrossrefWeb of Science®Google Scholar McPhee, J., “Virtual Prototyping of Multibody Systems with Linear Graph Theory and Symbolic Computing,” in Virtual Nonlinear Multibody Systems, ed. W. Schiehlen, and M. Valasek, Kluwer Academic, Dordrecht, 2003. Google Scholar Megaged, S. M., Principles of Robot Modeling and Simulations, Wiley & Sons, New York, 1993. Google Scholar Meriam, J. L., and Kraige, L. G., Engineering Mechanics, Vol. II: Dynamics, John Wiley & Sons, New York, 1987. Google Scholar Nakanishi, T., and Shabana, A. A., “The Use of Recursive Methods in the Dynamic Analysis of Tracked Vehicles,” Technical Report KMTR-92-002, Department of Mechanical Engineering, University of Illinois at Chicago, 1994. Google Scholar Negrut, D., Jay, L. O., and Khude, N., “A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics,” ASME Journal of Computational and Nonlinear Dynamics, vol. 4, 2009, pp. 021008– 1–021008-11. CrossrefWeb of Science®Google Scholar Nikravesh, P. E., Computer Aided Analysis of Mechanical Systems, Prentice Hall, Englewood Cliffs, NJ, 1988. Google Scholar O'Reilly, O. M., “The Dynamics of Rolling Diskd and Sliding Disks,” Nonlinear Dynamics, vol. 10, 1996, pp. 287– 305. CrossrefWeb of Science®Google Scholar Orlandea, N. V., “From Newtonian Dynamics to Sparse Tableaux Formulation and Multibody Dynamics,” IMechE Journal of Multibody Dynamics, vol. 222, 2008, pp. 301– 314. Web of Science®Google Scholar Orlandea, N., Chace, M. A., and Calahan, D. A., “A Sparsity Oriented Approach to Dynamic Analysis and Design of Mechanical Systems,” ASME Journal of Engineering for Industry, vol. 99, 1977, pp. 773– 784. CrossrefWeb of Science®Google Scholar Paul, B., Kinematics and Dynamics of Planar Machinery, Prentice Hall, Englewood Cliffs, NJ, 1979. Google Scholar Pennestri, E., and Freudenstein, F., “The Mechanical Efficiency of Epicyclic Gear Trains,” ASME Journal of Mechanical Design, vol. 115, 1993, pp. 645– 651. CrossrefWeb of Science®Google Scholar Pereira, M. F. O. S., and Ambrosio, J. A. C. (Eds.), Computer Aided Analysis of Rigid and Flexible Mechanical Systems, Kluwer Academic Publishers, Norwell, MA, 1994. CrossrefGoogle Scholar Pfeiffer, F., Mechanical System Dynamics, Springer-Verlag, Berlin, 2005. Google Scholar Pfeiffer, F., and Glocker, C., Multibody Dynamics with Unilateral Contacts, John Wiley & Sons, New York, 1996. Wiley Online LibraryGoogle Scholar Pogorelov, D., “Differential Algebraic Equations in Multibody System Modeling,” Numerical Algorithms, vol. 19, 2004, pp. 183– 194. CrossrefWeb of Science®Google Scholar Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes, 3rd ed., Cambridge University Press, New York, 1992. Google Scholar Rahnejat, H., “Physics of Causality and Continuum: Questioning Nature,” IMechE Journal of Multibody Dynamics, vol. 222, 2008, pp. 255– 263. Web of Science®Google Scholar Rismantab-Sany, J., and Shabana, A. A., “On the Numerical Solution of Differential and Algebraic Equations of Deformable Mechanical Systems with Nonholonmic Constraints,” Computers & Structures, vol. 33, 1989, pp. 1017– 1029. CrossrefWeb of Science®Google Scholar Roberson, R. E., and Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1988. CrossrefGoogle Scholar Schiehlen, W. O., “Dynamics of Complex Multibody Systems,” SM Archives, vol. 9, 1982, pp. 297– 308. Google Scholar Schiehlen, W. O., Technische Dynamik, B.G. Teubner, Stuttgart, 1986. Web of Science®Google Scholar W. O. Schiehlen (Ed.), Multibody Systems Handbook, Springer-Verlag, Berlin, 1990. CrossrefGoogle Scholar Schiehlen, W. O., “Multibody System Dynamics: Roots and Perspectives,” Multibody System Dynamics, vol. 1, 1997, pp. 149– 188. CrossrefGoogle Scholar Shabana, A. A., Theory of Vibration: An Introduction, 2nd ed., Springer-Verlag, New York, 1996. CrossrefGoogle Scholar Shabana, A. A., Vibration of Discrete and Continuous Systems, 2nd ed., Springer-Verlag, New York, 1997. Google Scholar Shabana, A. A., “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody System Dynamics, vol. 1, 1997, pp. 189– 222. CrossrefWeb of Science®Google Scholar Shabana, A. A., Dynamics of Multibody Systems, 3rd ed., Cambridge University Press, 2005. CrossrefGoogle Scholar Shabana, A. A., and Sany, J. R., “An Augmented Formulation for Mechanical Systems with Non-Generalized Coordinates: Application to Rigid Body Contact problems,” Nonlinear Dynamics, vol. 24, no. 2, 2001, pp. 183– 204. CrossrefWeb of Science®Google Scholar Shabana, A. A., Zaazaa, K. E., and Sugiyama, H., Railroad Vehicle Dynamics: A Computational Approach, Taylor & Francis/CRC, 2008. Google Scholar Shampine, L., and Gordon, M., Computer Solution of ODE: The Initial Value Problem, W.H. Freeman, San Francisco, CA, 1975. Google Scholar Sheth, P. N., and Uicker, J. J., “IMP (Integrated Mechanism Program), A Computer Aided Design Analysis System for Mechanism Linkages,” ASME Journal of Engineering for Industry, vol. 94, 1972, pp. 454– 464. CrossrefWeb of Science®Google Scholar Singh, R. P., and Likins, P. W., “Singular Value Decomposition for Constrained Dynamical Systems,” ASME Journal of Applied Mechanics, vol. 52, 1985, pp. 943– 948. CrossrefWeb of Science®Google Scholar Strang, G., Linear Algebra and its Applications, 3rd ed., Saunders College Publishing, New York, 1988. Google Scholar Tasora, A., Negrut, D., and Anitescu, “Large Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit,” IMechE Journal of Multibody Dynamics, vol. 222, 2008, pp. 315– 326. Web of Science®Google Scholar Teodorescu, M., and Rahnejat, H., “Newtonian Mechanics in Scale of Minutia,” IMechE Journal of Multibody Dynamics, vol. 222, 2008, pp. 393– 405. Web of Science®Google Scholar Terze, Z., Lefeber, D., and Mufic, O., “Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation,” Multibody System Dynamics, vol. 6, 2001, pp. 229– 243. CrossrefWeb of Science®Google Scholar Udwadia, F. E., “Equations of Motion for Constrained Multibody Systems and their Control,” Journal of Optimization Theory and Applications, vol. 127, no. 3, 2005, pp. 627– 638. CrossrefWeb of Science®Google Scholar Udwadia, F. E., and Phohomsiri, P., “Recursive Formulas for the Generalized LM-Inverse of a Matrix,” Journal of Optimization Theory and Applications, vol. 131, no. 1, 2006, pp. 1– 16. CrossrefWeb of Science®Google Scholar Uicker, J. J., Pennock, G. R., and Shigley, J. E., Theory of Machines and Mechanisms, 3rd ed., Oxford University Press, New York, 2003. CrossrefGoogle Scholar Wehage, R. A., “Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems,” Ph.D. thesis, University of Iowa, Iowa City, IA, 1980. Google Scholar Computational Dynamics, Third Edition ReferencesRelatedInformation" @default.
- W4206591272 created "2022-01-25" @default.
- W4206591272 date "2009-12-04" @default.
- W4206591272 modified "2023-10-16" @default.
- W4206591272 title "References" @default.
- W4206591272 cites W118649106 @default.
- W4206591272 cites W15217628 @default.
- W4206591272 cites W1602074088 @default.
- W4206591272 cites W1967181149 @default.
- W4206591272 cites W1967294899 @default.
- W4206591272 cites W1969887084 @default.
- W4206591272 cites W1972948342 @default.
- W4206591272 cites W1976586525 @default.
- W4206591272 cites W1978802207 @default.
- W4206591272 cites W1982807283 @default.
- W4206591272 cites W1984481333 @default.
- W4206591272 cites W1987191195 @default.
- W4206591272 cites W1996021131 @default.
- W4206591272 cites W2003965651 @default.
- W4206591272 cites W2004621887 @default.
- W4206591272 cites W2004664957 @default.
- W4206591272 cites W2005909423 @default.
- W4206591272 cites W2009671411 @default.
- W4206591272 cites W2027462288 @default.
- W4206591272 cites W2031253026 @default.
- W4206591272 cites W2038180857 @default.
- W4206591272 cites W2042356000 @default.
- W4206591272 cites W2047208457 @default.
- W4206591272 cites W2054096663 @default.
- W4206591272 cites W2059797436 @default.
- W4206591272 cites W2062963978 @default.
- W4206591272 cites W2063114873 @default.
- W4206591272 cites W2065441240 @default.
- W4206591272 cites W2070587720 @default.
- W4206591272 cites W2078544271 @default.
- W4206591272 cites W2081415325 @default.
- W4206591272 cites W2082227348 @default.
- W4206591272 cites W2087086151 @default.
- W4206591272 cites W2088957128 @default.
- W4206591272 cites W2102178400 @default.
- W4206591272 cites W2105427176 @default.
- W4206591272 cites W2112714741 @default.
- W4206591272 cites W2114252585 @default.
- W4206591272 cites W2119348011 @default.
- W4206591272 cites W2143293977 @default.
- W4206591272 cites W2166703312 @default.
- W4206591272 cites W2479741989 @default.
- W4206591272 cites W2610914687 @default.
- W4206591272 cites W2988278646 @default.
- W4206591272 cites W2999690596 @default.
- W4206591272 cites W329265659 @default.
- W4206591272 cites W38872521 @default.
- W4206591272 cites W4251990904 @default.
- W4206591272 doi "https://doi.org/10.1002/9780470686850.refs" @default.
- W4206591272 hasPublicationYear "2009" @default.
- W4206591272 type Work @default.
- W4206591272 citedByCount "0" @default.
- W4206591272 crossrefType "other" @default.
- W4206591272 hasBestOaLocation W42065912721 @default.
- W4206591272 hasConcept C41008148 @default.
- W4206591272 hasConceptScore W4206591272C41008148 @default.
- W4206591272 hasLocation W42065912721 @default.
- W4206591272 hasOpenAccess W4206591272 @default.
- W4206591272 hasPrimaryLocation W42065912721 @default.
- W4206591272 hasRelatedWork W1596801655 @default.
- W4206591272 hasRelatedWork W2130043461 @default.
- W4206591272 hasRelatedWork W2350741829 @default.
- W4206591272 hasRelatedWork W2358668433 @default.
- W4206591272 hasRelatedWork W2376932109 @default.
- W4206591272 hasRelatedWork W2382290278 @default.
- W4206591272 hasRelatedWork W2390279801 @default.
- W4206591272 hasRelatedWork W2748952813 @default.
- W4206591272 hasRelatedWork W2899084033 @default.
- W4206591272 hasRelatedWork W2530322880 @default.
- W4206591272 isParatext "false" @default.
- W4206591272 isRetracted "false" @default.
- W4206591272 workType "other" @default.