Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206645026> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4206645026 abstract "During the diagnosis of pulmonary diseases, the doctor listens to the lung sounds on the patient’s chest using a traditional stethoscope for the earlier detection of abnormal respiratory sounds. Currently, due to developments in the digital technology domain, an electronic stethoscope can instead be used to acquire respiratory sounds and save these as data for further processing and analysing. Many algorithms for automatic classification have been implemented to distinguish between several lung diseases. In this study, we implemented a deep residual network (ResNet) model with three different architectures based on different numbers of layers (ResNet-50/101/152) for the classification of pulmonary pathologies. To evaluate this method, we used it for the analysis of gammatonegrams, which transform lung sounds from onedimensional to two-dimensional representations. The image outputs obtained with the gammatonegram are fed as inputs to the Three-ResNet architecture. The ICBHI database was used to classify three types of pulmonary conditions, namely, healthy, chronic obstructive pulmonary disease (COPD) and pneumonia conditions. The results showed that, ResNet-50, ResNet-101 and ResNet-152 presented accuracies of 90.37%, 89.79% and 67.57%, respectively. Therefore, our results demonstrate that the residual networks can achieve significant accuracy for the classification of these three types of pulmonary conditions." @default.
- W4206645026 created "2022-01-26" @default.
- W4206645026 creator A5009044671 @default.
- W4206645026 creator A5062597312 @default.
- W4206645026 creator A5080806243 @default.
- W4206645026 creator A5088128267 @default.
- W4206645026 date "2021-11-20" @default.
- W4206645026 modified "2023-10-06" @default.
- W4206645026 title "Three ResNet Deep Learning Architectures Applied in Pulmonary Pathologies Classification" @default.
- W4206645026 cites W1489184006 @default.
- W4206645026 cites W2022760441 @default.
- W4206645026 cites W2050758723 @default.
- W4206645026 cites W2061939373 @default.
- W4206645026 cites W2093867321 @default.
- W4206645026 cites W2194775991 @default.
- W4206645026 cites W2496202950 @default.
- W4206645026 cites W2599111461 @default.
- W4206645026 cites W2614152541 @default.
- W4206645026 cites W2619772334 @default.
- W4206645026 cites W2754136846 @default.
- W4206645026 cites W2770896033 @default.
- W4206645026 cites W2801920224 @default.
- W4206645026 cites W2897722020 @default.
- W4206645026 cites W2901486635 @default.
- W4206645026 cites W2907100627 @default.
- W4206645026 cites W2921177942 @default.
- W4206645026 cites W2923148076 @default.
- W4206645026 cites W2961638199 @default.
- W4206645026 cites W2976001129 @default.
- W4206645026 cites W3011854269 @default.
- W4206645026 cites W3014593905 @default.
- W4206645026 cites W3103935216 @default.
- W4206645026 doi "https://doi.org/10.1109/ai-csp52968.2021.9671211" @default.
- W4206645026 hasPublicationYear "2021" @default.
- W4206645026 type Work @default.
- W4206645026 citedByCount "12" @default.
- W4206645026 countsByYear W42066450262022 @default.
- W4206645026 countsByYear W42066450262023 @default.
- W4206645026 crossrefType "proceedings-article" @default.
- W4206645026 hasAuthorship W4206645026A5009044671 @default.
- W4206645026 hasAuthorship W4206645026A5062597312 @default.
- W4206645026 hasAuthorship W4206645026A5080806243 @default.
- W4206645026 hasAuthorship W4206645026A5088128267 @default.
- W4206645026 hasConcept C108583219 @default.
- W4206645026 hasConcept C11413529 @default.
- W4206645026 hasConcept C126322002 @default.
- W4206645026 hasConcept C153180895 @default.
- W4206645026 hasConcept C154945302 @default.
- W4206645026 hasConcept C155512373 @default.
- W4206645026 hasConcept C2776780178 @default.
- W4206645026 hasConcept C2777914695 @default.
- W4206645026 hasConcept C28490314 @default.
- W4206645026 hasConcept C2944601119 @default.
- W4206645026 hasConcept C2992779976 @default.
- W4206645026 hasConcept C41008148 @default.
- W4206645026 hasConcept C71924100 @default.
- W4206645026 hasConceptScore W4206645026C108583219 @default.
- W4206645026 hasConceptScore W4206645026C11413529 @default.
- W4206645026 hasConceptScore W4206645026C126322002 @default.
- W4206645026 hasConceptScore W4206645026C153180895 @default.
- W4206645026 hasConceptScore W4206645026C154945302 @default.
- W4206645026 hasConceptScore W4206645026C155512373 @default.
- W4206645026 hasConceptScore W4206645026C2776780178 @default.
- W4206645026 hasConceptScore W4206645026C2777914695 @default.
- W4206645026 hasConceptScore W4206645026C28490314 @default.
- W4206645026 hasConceptScore W4206645026C2944601119 @default.
- W4206645026 hasConceptScore W4206645026C2992779976 @default.
- W4206645026 hasConceptScore W4206645026C41008148 @default.
- W4206645026 hasConceptScore W4206645026C71924100 @default.
- W4206645026 hasLocation W42066450261 @default.
- W4206645026 hasOpenAccess W4206645026 @default.
- W4206645026 hasPrimaryLocation W42066450261 @default.
- W4206645026 hasRelatedWork W2372071230 @default.
- W4206645026 hasRelatedWork W2563602643 @default.
- W4206645026 hasRelatedWork W2738221750 @default.
- W4206645026 hasRelatedWork W2915754718 @default.
- W4206645026 hasRelatedWork W3089733734 @default.
- W4206645026 hasRelatedWork W3099850646 @default.
- W4206645026 hasRelatedWork W3119017868 @default.
- W4206645026 hasRelatedWork W4304175695 @default.
- W4206645026 hasRelatedWork W4381487685 @default.
- W4206645026 hasRelatedWork W4385580948 @default.
- W4206645026 isParatext "false" @default.
- W4206645026 isRetracted "false" @default.
- W4206645026 workType "article" @default.