Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206648819> ?p ?o ?g. }
- W4206648819 endingPage "110719" @default.
- W4206648819 startingPage "110719" @default.
- W4206648819 abstract "Tool wear prediction was significant for improving processing efficiency, ensuring product quality and reducing tool costs in manufacturing. In this paper, a novel deep learning method based on stacked sparse autoencoders (SSAE) and multi-sensor feature fusion was proposed for milling tool wear prediction. The signal features were extracted in time, frequency and time–frequency domains and the optimum multi-sensor features were determined by correlation analysis, which were input into the SSAE for deep feature learning. Backpropagation neural network (BPNN) was utilized to establish the prediction model of tool wear. Different milling wear experiment datasets were applied to verify the predictive performance of the trained models. The prediction results showed that the proposed model had the minimum root mean square error (RMSE) and maximum coefficient of determination (R2), which outperformed the comparative predictive models. The combination of multi-sensor feature fusion and deep learning method was demonstrated for improving the predictive performance." @default.
- W4206648819 created "2022-01-25" @default.
- W4206648819 creator A5011472059 @default.
- W4206648819 creator A5020225736 @default.
- W4206648819 creator A5061570519 @default.
- W4206648819 date "2022-02-01" @default.
- W4206648819 modified "2023-10-16" @default.
- W4206648819 title "Milling tool wear prediction using multi-sensor feature fusion based on stacked sparse autoencoders" @default.
- W4206648819 cites W1481376396 @default.
- W4206648819 cites W1994706628 @default.
- W4206648819 cites W2000304567 @default.
- W4206648819 cites W2012500676 @default.
- W4206648819 cites W2050433780 @default.
- W4206648819 cites W2069262928 @default.
- W4206648819 cites W2321274876 @default.
- W4206648819 cites W2411149632 @default.
- W4206648819 cites W2580840020 @default.
- W4206648819 cites W2765528441 @default.
- W4206648819 cites W2769319337 @default.
- W4206648819 cites W2770233526 @default.
- W4206648819 cites W2790661307 @default.
- W4206648819 cites W2793471602 @default.
- W4206648819 cites W2794469369 @default.
- W4206648819 cites W2799972844 @default.
- W4206648819 cites W2883085683 @default.
- W4206648819 cites W2888865870 @default.
- W4206648819 cites W2900529838 @default.
- W4206648819 cites W2901112046 @default.
- W4206648819 cites W2931571053 @default.
- W4206648819 cites W2936377522 @default.
- W4206648819 cites W2943919793 @default.
- W4206648819 cites W2949666355 @default.
- W4206648819 cites W2953097443 @default.
- W4206648819 cites W2967000986 @default.
- W4206648819 cites W2983949338 @default.
- W4206648819 cites W2986896780 @default.
- W4206648819 cites W2988017727 @default.
- W4206648819 cites W2991881318 @default.
- W4206648819 cites W2997905955 @default.
- W4206648819 cites W3035498232 @default.
- W4206648819 cites W3041632065 @default.
- W4206648819 cites W3043012071 @default.
- W4206648819 cites W3043899764 @default.
- W4206648819 cites W3044572681 @default.
- W4206648819 cites W3059408775 @default.
- W4206648819 cites W3092273550 @default.
- W4206648819 cites W3114814413 @default.
- W4206648819 cites W3134358159 @default.
- W4206648819 cites W3155049708 @default.
- W4206648819 cites W3179193383 @default.
- W4206648819 cites W3209440801 @default.
- W4206648819 cites W589904568 @default.
- W4206648819 cites W761659982 @default.
- W4206648819 doi "https://doi.org/10.1016/j.measurement.2022.110719" @default.
- W4206648819 hasPublicationYear "2022" @default.
- W4206648819 type Work @default.
- W4206648819 citedByCount "29" @default.
- W4206648819 countsByYear W42066488192022 @default.
- W4206648819 countsByYear W42066488192023 @default.
- W4206648819 crossrefType "journal-article" @default.
- W4206648819 hasAuthorship W4206648819A5011472059 @default.
- W4206648819 hasAuthorship W4206648819A5020225736 @default.
- W4206648819 hasAuthorship W4206648819A5061570519 @default.
- W4206648819 hasConcept C105795698 @default.
- W4206648819 hasConcept C119857082 @default.
- W4206648819 hasConcept C127413603 @default.
- W4206648819 hasConcept C138885662 @default.
- W4206648819 hasConcept C139945424 @default.
- W4206648819 hasConcept C153180895 @default.
- W4206648819 hasConcept C154945302 @default.
- W4206648819 hasConcept C155032097 @default.
- W4206648819 hasConcept C158525013 @default.
- W4206648819 hasConcept C2776401178 @default.
- W4206648819 hasConcept C2776450708 @default.
- W4206648819 hasConcept C2780092901 @default.
- W4206648819 hasConcept C33923547 @default.
- W4206648819 hasConcept C41008148 @default.
- W4206648819 hasConcept C41895202 @default.
- W4206648819 hasConcept C45804977 @default.
- W4206648819 hasConcept C50644808 @default.
- W4206648819 hasConcept C523214423 @default.
- W4206648819 hasConcept C52622490 @default.
- W4206648819 hasConcept C78519656 @default.
- W4206648819 hasConceptScore W4206648819C105795698 @default.
- W4206648819 hasConceptScore W4206648819C119857082 @default.
- W4206648819 hasConceptScore W4206648819C127413603 @default.
- W4206648819 hasConceptScore W4206648819C138885662 @default.
- W4206648819 hasConceptScore W4206648819C139945424 @default.
- W4206648819 hasConceptScore W4206648819C153180895 @default.
- W4206648819 hasConceptScore W4206648819C154945302 @default.
- W4206648819 hasConceptScore W4206648819C155032097 @default.
- W4206648819 hasConceptScore W4206648819C158525013 @default.
- W4206648819 hasConceptScore W4206648819C2776401178 @default.
- W4206648819 hasConceptScore W4206648819C2776450708 @default.
- W4206648819 hasConceptScore W4206648819C2780092901 @default.
- W4206648819 hasConceptScore W4206648819C33923547 @default.
- W4206648819 hasConceptScore W4206648819C41008148 @default.
- W4206648819 hasConceptScore W4206648819C41895202 @default.