Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206682511> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4206682511 abstract "The need for more accurate simulations has pushed scientists and engineers to design better, more accurate and more complex MOSFET compact models. This has been supported by the big improvements in computational power and speed in the last decades. The number of parameters of the compact models has increased to hundreds and thousands and it is far beyond what the human mind can handle. As a results, the calibration of the models to represent the real characteristics of the device, also known as parameter extraction, is a complex and time consuming task. To solve this problem, many automatic techniques have been tried and the most promising ones are based on genetic algorithms. Genetic algorithms on the other side, although appropriate for such tasks, require a large number of simulations to converge to a good solution. In this paper we propose a methodology to drastically reduce the number of simulations by introducing a combination of genetic algorithms and surrogate models as classifiers. The state of the art about the combination of surrogate models and genetic algorithms is exclusively focused on how to use surrogate models to substitute the expensive simulations. Our novel approach consists on adding a classifier layer between the genetic algorithm and the simulations, which filters out a significant number of non-promising parameter sets that do not need to be simulated at all. In this research, differential evolution was used as the genetic algorithm and after a careful evaluation of several classifier types, the decision tree classifier was selected as the best performing one. The method was tested with two complex real life problems, BSIM4 and HiSIM-HV MOSFET compact models, and the results show that up to 70% of the simulations could be eliminated without disturbing the convergence of the algorithm and maintaining the accuracy of the solution." @default.
- W4206682511 created "2022-01-26" @default.
- W4206682511 creator A5026080442 @default.
- W4206682511 creator A5040778804 @default.
- W4206682511 creator A5044435781 @default.
- W4206682511 creator A5053377335 @default.
- W4206682511 creator A5067961863 @default.
- W4206682511 creator A5078115062 @default.
- W4206682511 date "2021-11-28" @default.
- W4206682511 modified "2023-10-08" @default.
- W4206682511 title "Machine learning-based acceleration of Genetic Algorithms for Parameter Extraction of highly dimensional MOSFET Compact Models" @default.
- W4206682511 cites W1982756257 @default.
- W4206682511 cites W2023242330 @default.
- W4206682511 cites W2098012397 @default.
- W4206682511 cites W2118621714 @default.
- W4206682511 cites W2161313204 @default.
- W4206682511 cites W2966122622 @default.
- W4206682511 doi "https://doi.org/10.1109/icecs53924.2021.9665517" @default.
- W4206682511 hasPublicationYear "2021" @default.
- W4206682511 type Work @default.
- W4206682511 citedByCount "6" @default.
- W4206682511 countsByYear W42066825112022 @default.
- W4206682511 countsByYear W42066825112023 @default.
- W4206682511 crossrefType "proceedings-article" @default.
- W4206682511 hasAuthorship W4206682511A5026080442 @default.
- W4206682511 hasAuthorship W4206682511A5040778804 @default.
- W4206682511 hasAuthorship W4206682511A5044435781 @default.
- W4206682511 hasAuthorship W4206682511A5053377335 @default.
- W4206682511 hasAuthorship W4206682511A5067961863 @default.
- W4206682511 hasAuthorship W4206682511A5078115062 @default.
- W4206682511 hasConcept C11413529 @default.
- W4206682511 hasConcept C119857082 @default.
- W4206682511 hasConcept C131675550 @default.
- W4206682511 hasConcept C154945302 @default.
- W4206682511 hasConcept C161164918 @default.
- W4206682511 hasConcept C41008148 @default.
- W4206682511 hasConcept C4935549 @default.
- W4206682511 hasConcept C84525736 @default.
- W4206682511 hasConcept C8880873 @default.
- W4206682511 hasConcept C95623464 @default.
- W4206682511 hasConceptScore W4206682511C11413529 @default.
- W4206682511 hasConceptScore W4206682511C119857082 @default.
- W4206682511 hasConceptScore W4206682511C131675550 @default.
- W4206682511 hasConceptScore W4206682511C154945302 @default.
- W4206682511 hasConceptScore W4206682511C161164918 @default.
- W4206682511 hasConceptScore W4206682511C41008148 @default.
- W4206682511 hasConceptScore W4206682511C4935549 @default.
- W4206682511 hasConceptScore W4206682511C84525736 @default.
- W4206682511 hasConceptScore W4206682511C8880873 @default.
- W4206682511 hasConceptScore W4206682511C95623464 @default.
- W4206682511 hasLocation W42066825111 @default.
- W4206682511 hasOpenAccess W4206682511 @default.
- W4206682511 hasPrimaryLocation W42066825111 @default.
- W4206682511 hasRelatedWork W1470425429 @default.
- W4206682511 hasRelatedWork W3127425528 @default.
- W4206682511 hasRelatedWork W3200179079 @default.
- W4206682511 hasRelatedWork W4205478082 @default.
- W4206682511 hasRelatedWork W4281385048 @default.
- W4206682511 hasRelatedWork W4308191010 @default.
- W4206682511 hasRelatedWork W4313001487 @default.
- W4206682511 hasRelatedWork W4318350883 @default.
- W4206682511 hasRelatedWork W4328134586 @default.
- W4206682511 hasRelatedWork W4361795583 @default.
- W4206682511 isParatext "false" @default.
- W4206682511 isRetracted "false" @default.
- W4206682511 workType "article" @default.