Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206692458> ?p ?o ?g. }
- W4206692458 endingPage "100036" @default.
- W4206692458 startingPage "100036" @default.
- W4206692458 abstract "Nowadays, the application of materials, such as surfactants and nanoparticles in enhanced oil recovery (EOR) projects has been widely studied. So, the adsorption process of these substances is one of the important methods to increase the oil recovery factor from carbonate oil reservoirs. However, understanding how the surfactant-nanoparticle combination interacts through the adsorption process onto the carbonate reservoir rocks surface is not well discussed. In this paper, the adsorption process of saponin extracted from the Glycyrrhiza glabra plant as a natural non-ionic surfactant (GG surfactant) with the presence of hydrophilic titanium dioxide nanoparticles (HITNPs) onto the carbonate reservoir rock (adsorbent) surface has been investigated for mobilizing the crude oil remaining to increase the oil recovery factor. Hence, this study highlights the equilibrium adsorption rate and the adsorption kinetics of these materials in aqueous solutions for chemical EOR schemes. Also, analyses of X-ray diffraction (XRD) spectrometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy have been applied to confirm and determine the physicochemical changes and properties of materials. To evaluate the adsorption rate and the relationship between surfactant concentration with the presence of nanoparticles and adsorption density on the adsorbent surface in the aqueous phase, batch adsorption tests under atmospheric conditions at different concentrations and times have been used to comprehend the impact of adsorbate dose on the sorption efficiency. Therefore, the electrical conductivity (EC) technique was used for measuring the adsorption rate of surfactant with the presence of HITNPs in the aqueous phase on the adsorbent surface. The adsorption kinetics process was experimentally investigated at laboratory temperature (25 °C) by monitoring the uptake of solutions on the adsorbent surface as a function of time. The experimental adsorption data were also examined by different equilibrium and kinetic models of adsorption. Hence, the adsorption parameters were determined for each model. Langmuir isotherm was the best model according to the higher values of the correlation coefficient (R2) for GG surfactant and surfactant nanofluid solutions on the adsorbent surface. Furthermore, the pseudo-second-order kinetic model could satisfactorily estimate the adsorption kinetics of GG surfactant and surfactant nanofluid solutions on the adsorbent surface. Results indicated that the adsorption process of GG surfactant and surfactant nanofluid solutions on the adsorbent surface is characterized by a short period of rapid adsorption, followed by a long period of slower adsorption. Moreover, the results of the IFT experiment of these materials showed that GG surfactant and surfactant nanofluid solutions could significantly reduce the IFT value between oil and water system. Finally, the results obtained from this study can help in selecting appropriate surfactants and metal oxide nanoparticles for the design of EOR projects, especially reservoir simulation schemes and chemical flooding processes for carbonate oil reservoirs." @default.
- W4206692458 created "2022-01-26" @default.
- W4206692458 creator A5061268911 @default.
- W4206692458 creator A5078840151 @default.
- W4206692458 creator A5085908131 @default.
- W4206692458 date "2022-06-01" @default.
- W4206692458 modified "2023-10-01" @default.
- W4206692458 title "Experimental investigation of the adsorption process of the surfactant-nanoparticle combination onto the carbonate reservoir rock surface in the enhanced oil recovery (EOR) process" @default.
- W4206692458 cites W1171228705 @default.
- W4206692458 cites W1208663408 @default.
- W4206692458 cites W1890601926 @default.
- W4206692458 cites W1963935978 @default.
- W4206692458 cites W1972046581 @default.
- W4206692458 cites W1979247426 @default.
- W4206692458 cites W1979330161 @default.
- W4206692458 cites W1983088368 @default.
- W4206692458 cites W1989421498 @default.
- W4206692458 cites W1991854448 @default.
- W4206692458 cites W1996091789 @default.
- W4206692458 cites W1996722237 @default.
- W4206692458 cites W1996799603 @default.
- W4206692458 cites W1997827716 @default.
- W4206692458 cites W2000179075 @default.
- W4206692458 cites W2000889974 @default.
- W4206692458 cites W2002197870 @default.
- W4206692458 cites W2002396128 @default.
- W4206692458 cites W2002841972 @default.
- W4206692458 cites W2008267005 @default.
- W4206692458 cites W2016440112 @default.
- W4206692458 cites W2017149900 @default.
- W4206692458 cites W2018791696 @default.
- W4206692458 cites W2028287026 @default.
- W4206692458 cites W2030414643 @default.
- W4206692458 cites W2033528320 @default.
- W4206692458 cites W2036028392 @default.
- W4206692458 cites W2040269011 @default.
- W4206692458 cites W2040388380 @default.
- W4206692458 cites W2040462911 @default.
- W4206692458 cites W2062382514 @default.
- W4206692458 cites W2065572828 @default.
- W4206692458 cites W2067172051 @default.
- W4206692458 cites W2068714345 @default.
- W4206692458 cites W2072004151 @default.
- W4206692458 cites W2074572409 @default.
- W4206692458 cites W2077007432 @default.
- W4206692458 cites W2081184841 @default.
- W4206692458 cites W2084151407 @default.
- W4206692458 cites W2087101123 @default.
- W4206692458 cites W2094033615 @default.
- W4206692458 cites W2100168611 @default.
- W4206692458 cites W2105440490 @default.
- W4206692458 cites W2106268433 @default.
- W4206692458 cites W2112017750 @default.
- W4206692458 cites W2117397808 @default.
- W4206692458 cites W2120803809 @default.
- W4206692458 cites W2121465217 @default.
- W4206692458 cites W2129824396 @default.
- W4206692458 cites W2139385929 @default.
- W4206692458 cites W2160415139 @default.
- W4206692458 cites W2166223984 @default.
- W4206692458 cites W2166601596 @default.
- W4206692458 cites W2166686744 @default.
- W4206692458 cites W2186106210 @default.
- W4206692458 cites W2193325472 @default.
- W4206692458 cites W2273677684 @default.
- W4206692458 cites W2273928339 @default.
- W4206692458 cites W2281120090 @default.
- W4206692458 cites W2293657740 @default.
- W4206692458 cites W2300474821 @default.
- W4206692458 cites W2314073334 @default.
- W4206692458 cites W2314104404 @default.
- W4206692458 cites W2316115019 @default.
- W4206692458 cites W2323951270 @default.
- W4206692458 cites W2325429999 @default.
- W4206692458 cites W2329473117 @default.
- W4206692458 cites W2330960746 @default.
- W4206692458 cites W2331186272 @default.
- W4206692458 cites W2337080025 @default.
- W4206692458 cites W2346994484 @default.
- W4206692458 cites W2418902690 @default.
- W4206692458 cites W2474588671 @default.
- W4206692458 cites W2476714855 @default.
- W4206692458 cites W2549816058 @default.
- W4206692458 cites W2559310427 @default.
- W4206692458 cites W2596329033 @default.
- W4206692458 cites W2617477945 @default.
- W4206692458 cites W2752698709 @default.
- W4206692458 cites W2760987557 @default.
- W4206692458 cites W2765436134 @default.
- W4206692458 cites W2809319330 @default.
- W4206692458 cites W2884931106 @default.
- W4206692458 cites W2896697352 @default.
- W4206692458 cites W2917796572 @default.
- W4206692458 cites W2959947437 @default.
- W4206692458 cites W2965120854 @default.
- W4206692458 cites W3001547464 @default.
- W4206692458 cites W3031915321 @default.
- W4206692458 cites W3033190376 @default.