Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206706074> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4206706074 abstract "In the ever-updating digital world, automatic handwritten math symbols classification (HMC) plays many vital roles in the advancement of computer-aided systems. It is the main foundation of perfecting one of the most challenging tasks out there: recognizing handwritten mathematical formulas. As with the other similar automated handwritten characters classifications tasks, HMC also faces various difficulties while attempting to correctly classify images. As people tend to have distinct types of handwriting styles and unique ways to write symbols, a simple character may have infinite versions of itself. In our research, we focused on the classification of such images of numerous handwritten mathematical symbols. For this classification, we have developed a convolutional neural network (CNN) model and worked with three different datasets to test our model’s efficiency. We introduced different data augmentation techniques to construct various versions of the already available images. This created a virtual mimicry of people’s tendency to write the same character in many styles. Our CNN model of 11 layers (6 were convolutional layers) worked to classify 16 classes (each denoting a mathematical symbol or digit) and had an accuracy of 98.71%, 99.01%, and 99.85% respectively on three publicly available datasets. To our knowledge, our model performed better than every other research work in this field. Considering this remarkable success, we are bent on working further on this and creating a fully working app that would eventually be able to automatically classify handwritten mathematical formulas." @default.
- W4206706074 created "2022-01-25" @default.
- W4206706074 creator A5003774120 @default.
- W4206706074 creator A5042041643 @default.
- W4206706074 creator A5068116325 @default.
- W4206706074 date "2021-11-18" @default.
- W4206706074 modified "2023-10-16" @default.
- W4206706074 title "Recognition of Basic Handwritten Math Symbols Using Convolutional Neural Network with Data Augmentation" @default.
- W4206706074 doi "https://doi.org/10.1109/iceeict53905.2021.9667794" @default.
- W4206706074 hasPublicationYear "2021" @default.
- W4206706074 type Work @default.
- W4206706074 citedByCount "0" @default.
- W4206706074 crossrefType "proceedings-article" @default.
- W4206706074 hasAuthorship W4206706074A5003774120 @default.
- W4206706074 hasAuthorship W4206706074A5042041643 @default.
- W4206706074 hasAuthorship W4206706074A5068116325 @default.
- W4206706074 hasConcept C112640561 @default.
- W4206706074 hasConcept C115961682 @default.
- W4206706074 hasConcept C134400042 @default.
- W4206706074 hasConcept C153180895 @default.
- W4206706074 hasConcept C154945302 @default.
- W4206706074 hasConcept C199360897 @default.
- W4206706074 hasConcept C202444582 @default.
- W4206706074 hasConcept C204321447 @default.
- W4206706074 hasConcept C2524010 @default.
- W4206706074 hasConcept C2779386606 @default.
- W4206706074 hasConcept C2780801425 @default.
- W4206706074 hasConcept C2780861071 @default.
- W4206706074 hasConcept C2987247673 @default.
- W4206706074 hasConcept C33923547 @default.
- W4206706074 hasConcept C41008148 @default.
- W4206706074 hasConcept C44868376 @default.
- W4206706074 hasConcept C50644808 @default.
- W4206706074 hasConcept C52622490 @default.
- W4206706074 hasConcept C81363708 @default.
- W4206706074 hasConcept C9652623 @default.
- W4206706074 hasConceptScore W4206706074C112640561 @default.
- W4206706074 hasConceptScore W4206706074C115961682 @default.
- W4206706074 hasConceptScore W4206706074C134400042 @default.
- W4206706074 hasConceptScore W4206706074C153180895 @default.
- W4206706074 hasConceptScore W4206706074C154945302 @default.
- W4206706074 hasConceptScore W4206706074C199360897 @default.
- W4206706074 hasConceptScore W4206706074C202444582 @default.
- W4206706074 hasConceptScore W4206706074C204321447 @default.
- W4206706074 hasConceptScore W4206706074C2524010 @default.
- W4206706074 hasConceptScore W4206706074C2779386606 @default.
- W4206706074 hasConceptScore W4206706074C2780801425 @default.
- W4206706074 hasConceptScore W4206706074C2780861071 @default.
- W4206706074 hasConceptScore W4206706074C2987247673 @default.
- W4206706074 hasConceptScore W4206706074C33923547 @default.
- W4206706074 hasConceptScore W4206706074C41008148 @default.
- W4206706074 hasConceptScore W4206706074C44868376 @default.
- W4206706074 hasConceptScore W4206706074C50644808 @default.
- W4206706074 hasConceptScore W4206706074C52622490 @default.
- W4206706074 hasConceptScore W4206706074C81363708 @default.
- W4206706074 hasConceptScore W4206706074C9652623 @default.
- W4206706074 hasLocation W42067060741 @default.
- W4206706074 hasOpenAccess W4206706074 @default.
- W4206706074 hasPrimaryLocation W42067060741 @default.
- W4206706074 hasRelatedWork W1997007215 @default.
- W4206706074 hasRelatedWork W2030917387 @default.
- W4206706074 hasRelatedWork W2083373748 @default.
- W4206706074 hasRelatedWork W2098519447 @default.
- W4206706074 hasRelatedWork W2387947931 @default.
- W4206706074 hasRelatedWork W2905993665 @default.
- W4206706074 hasRelatedWork W3096089954 @default.
- W4206706074 hasRelatedWork W4220954837 @default.
- W4206706074 hasRelatedWork W4313556359 @default.
- W4206706074 hasRelatedWork W943907172 @default.
- W4206706074 isParatext "false" @default.
- W4206706074 isRetracted "false" @default.
- W4206706074 workType "article" @default.