Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206730401> ?p ?o ?g. }
- W4206730401 endingPage "17" @default.
- W4206730401 startingPage "1" @default.
- W4206730401 abstract "Significant progress has been made in spatiotemporal fusion for remote sensing images; however, most models require inputs to be free of clouds and without missing data, considerably confining their applications in practice. Due to recent advances in deep learning technologies, powerful modeling capabilities could be leveraged to bring potential solutions to this problem. This article proposes a novel architecture named the robust spatiotemporal fusion network (RSFN) based on the generative adversarial network and attention mechanism with dual temporal references to automatically handle input noise. The RSFN only needs one coarse-resolution image on the prediction date and two referential fine-resolution images before and after the prediction date as model inputs. Most notably, there is no special restriction attached on the data quality of referential images. The comparison with other models demonstrates the effectiveness of the RSFN model quantitatively and visually in four study areas using MODIS and Landsat images. Two main conclusions can draw from the experiments. First, the input data noise hardly affects the prediction results of the RSFN, and the RSFN can gain a comparable or even higher accuracy; conversely, the other methods only show limited resistance to input noise. Second, the RSFN with cloud-contaminated references outperforms the other models with cloud-free references after data filtering in the same study area during the same period. The satellite data quality usually varies significantly; the model robustness and fault tolerance are considered critical for actual applications. The RSFN is a simple end-to-end deep model with high accuracy and fault tolerance designed for spatiotemporal fusion with imperfect data inputs, showing promising prospects in practical applications." @default.
- W4206730401 created "2022-01-25" @default.
- W4206730401 creator A5003848639 @default.
- W4206730401 creator A5041126796 @default.
- W4206730401 creator A5044682865 @default.
- W4206730401 creator A5075615122 @default.
- W4206730401 creator A5079820901 @default.
- W4206730401 date "2022-01-01" @default.
- W4206730401 modified "2023-10-17" @default.
- W4206730401 title "A Robust Model for MODIS and Landsat Image Fusion Considering Input Noise" @default.
- W4206730401 cites W1982956952 @default.
- W4206730401 cites W1986629820 @default.
- W4206730401 cites W1987927366 @default.
- W4206730401 cites W2010319424 @default.
- W4206730401 cites W2012188213 @default.
- W4206730401 cites W2013140666 @default.
- W4206730401 cites W2023306858 @default.
- W4206730401 cites W2050225888 @default.
- W4206730401 cites W2056811372 @default.
- W4206730401 cites W2082263501 @default.
- W4206730401 cites W2088603520 @default.
- W4206730401 cites W2133665775 @default.
- W4206730401 cites W2194775991 @default.
- W4206730401 cites W2200350976 @default.
- W4206730401 cites W2331128040 @default.
- W4206730401 cites W2514340250 @default.
- W4206730401 cites W2765811365 @default.
- W4206730401 cites W2782522152 @default.
- W4206730401 cites W2793046539 @default.
- W4206730401 cites W2793445582 @default.
- W4206730401 cites W2795018073 @default.
- W4206730401 cites W2804526550 @default.
- W4206730401 cites W2892959751 @default.
- W4206730401 cites W2939570633 @default.
- W4206730401 cites W2940726923 @default.
- W4206730401 cites W2942170965 @default.
- W4206730401 cites W2963039693 @default.
- W4206730401 cites W2964121818 @default.
- W4206730401 cites W2969947163 @default.
- W4206730401 cites W2973184731 @default.
- W4206730401 cites W2981854972 @default.
- W4206730401 cites W2992343265 @default.
- W4206730401 cites W3004446657 @default.
- W4206730401 cites W3011782621 @default.
- W4206730401 cites W3041874188 @default.
- W4206730401 cites W3081692415 @default.
- W4206730401 cites W3088318080 @default.
- W4206730401 cites W3090865140 @default.
- W4206730401 cites W3092222322 @default.
- W4206730401 cites W3095295556 @default.
- W4206730401 cites W3115223653 @default.
- W4206730401 cites W3123173184 @default.
- W4206730401 cites W3130134880 @default.
- W4206730401 cites W3143783562 @default.
- W4206730401 cites W3154335459 @default.
- W4206730401 cites W4295012191 @default.
- W4206730401 doi "https://doi.org/10.1109/tgrs.2022.3145086" @default.
- W4206730401 hasPublicationYear "2022" @default.
- W4206730401 type Work @default.
- W4206730401 citedByCount "5" @default.
- W4206730401 countsByYear W42067304012022 @default.
- W4206730401 countsByYear W42067304012023 @default.
- W4206730401 crossrefType "journal-article" @default.
- W4206730401 hasAuthorship W4206730401A5003848639 @default.
- W4206730401 hasAuthorship W4206730401A5041126796 @default.
- W4206730401 hasAuthorship W4206730401A5044682865 @default.
- W4206730401 hasAuthorship W4206730401A5075615122 @default.
- W4206730401 hasAuthorship W4206730401A5079820901 @default.
- W4206730401 hasConcept C104317684 @default.
- W4206730401 hasConcept C108583219 @default.
- W4206730401 hasConcept C111919701 @default.
- W4206730401 hasConcept C115961682 @default.
- W4206730401 hasConcept C124101348 @default.
- W4206730401 hasConcept C127313418 @default.
- W4206730401 hasConcept C154945302 @default.
- W4206730401 hasConcept C185592680 @default.
- W4206730401 hasConcept C205372480 @default.
- W4206730401 hasConcept C33954974 @default.
- W4206730401 hasConcept C41008148 @default.
- W4206730401 hasConcept C55493867 @default.
- W4206730401 hasConcept C62649853 @default.
- W4206730401 hasConcept C63479239 @default.
- W4206730401 hasConcept C67186912 @default.
- W4206730401 hasConcept C77088390 @default.
- W4206730401 hasConcept C79974875 @default.
- W4206730401 hasConcept C99498987 @default.
- W4206730401 hasConceptScore W4206730401C104317684 @default.
- W4206730401 hasConceptScore W4206730401C108583219 @default.
- W4206730401 hasConceptScore W4206730401C111919701 @default.
- W4206730401 hasConceptScore W4206730401C115961682 @default.
- W4206730401 hasConceptScore W4206730401C124101348 @default.
- W4206730401 hasConceptScore W4206730401C127313418 @default.
- W4206730401 hasConceptScore W4206730401C154945302 @default.
- W4206730401 hasConceptScore W4206730401C185592680 @default.
- W4206730401 hasConceptScore W4206730401C205372480 @default.
- W4206730401 hasConceptScore W4206730401C33954974 @default.
- W4206730401 hasConceptScore W4206730401C41008148 @default.
- W4206730401 hasConceptScore W4206730401C55493867 @default.