Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206730606> ?p ?o ?g. }
- W4206730606 endingPage "12" @default.
- W4206730606 startingPage "1" @default.
- W4206730606 abstract "Psoriasis is a chronic inflammatory skin disorder mediated by the immune response that affects a large number of people. According to latest worldwide statistics, 125 million individuals are suffering from psoriasis. Deep learning techniques have demonstrated success in the prediction of skin diseases and can also lead to the classification of different types of psoriasis. Hence, we propose a deep learning-based application for effective classification of five types of psoriasis namely, plaque, guttate, inverse, pustular, and erythrodermic as well as the prediction of normal skin. We used 172 images of normal skin from the BFL NTU dataset and 301 images of psoriasis from the Dermnet dataset. The input sample images underwent image preprocessing including data augmentation, enhancement, and segmentation which was followed by color, texture, and shape feature extraction. Two deep learning algorithms of convolutional neural network (CNN) and long short-term memory (LSTM) were applied with the classification models being trained with 80% of the images. The reported accuracies of CNN and LSTM are 84.2% and 72.3%, respectively. A paired sample T-test exhibited significant differences between the accuracies generated by the two deep learning algorithms with a <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </math> . The accuracies reported from this study demonstrate potential of this deep learning application to be applied to other areas of dermatology for better prediction." @default.
- W4206730606 created "2022-01-26" @default.
- W4206730606 creator A5007657651 @default.
- W4206730606 creator A5016367221 @default.
- W4206730606 creator A5032807776 @default.
- W4206730606 creator A5039908688 @default.
- W4206730606 creator A5090253641 @default.
- W4206730606 date "2022-01-15" @default.
- W4206730606 modified "2023-10-14" @default.
- W4206730606 title "Deep Learning Application for Effective Classification of Different Types of Psoriasis" @default.
- W4206730606 cites W2028537105 @default.
- W4206730606 cites W2070746791 @default.
- W4206730606 cites W2153702132 @default.
- W4206730606 cites W2490107668 @default.
- W4206730606 cites W2558385573 @default.
- W4206730606 cites W2594743779 @default.
- W4206730606 cites W2733541001 @default.
- W4206730606 cites W2766243861 @default.
- W4206730606 cites W2767689088 @default.
- W4206730606 cites W2772246530 @default.
- W4206730606 cites W2781233454 @default.
- W4206730606 cites W2794251468 @default.
- W4206730606 cites W2885059412 @default.
- W4206730606 cites W2890930639 @default.
- W4206730606 cites W2914209001 @default.
- W4206730606 cites W2915626801 @default.
- W4206730606 cites W2924895007 @default.
- W4206730606 cites W2944800263 @default.
- W4206730606 cites W2963016155 @default.
- W4206730606 cites W2971667944 @default.
- W4206730606 cites W3010909573 @default.
- W4206730606 cites W3011778359 @default.
- W4206730606 cites W3021399285 @default.
- W4206730606 cites W3036818359 @default.
- W4206730606 cites W3120946080 @default.
- W4206730606 cites W3158307528 @default.
- W4206730606 cites W3171031465 @default.
- W4206730606 cites W3192610404 @default.
- W4206730606 cites W3194013852 @default.
- W4206730606 cites W3198206641 @default.
- W4206730606 cites W3199349107 @default.
- W4206730606 cites W3201755143 @default.
- W4206730606 cites W3202063386 @default.
- W4206730606 cites W3208002538 @default.
- W4206730606 cites W4247259120 @default.
- W4206730606 cites W4255141494 @default.
- W4206730606 doi "https://doi.org/10.1155/2022/7541583" @default.
- W4206730606 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35075392" @default.
- W4206730606 hasPublicationYear "2022" @default.
- W4206730606 type Work @default.
- W4206730606 citedByCount "13" @default.
- W4206730606 countsByYear W42067306062022 @default.
- W4206730606 countsByYear W42067306062023 @default.
- W4206730606 crossrefType "journal-article" @default.
- W4206730606 hasAuthorship W4206730606A5007657651 @default.
- W4206730606 hasAuthorship W4206730606A5016367221 @default.
- W4206730606 hasAuthorship W4206730606A5032807776 @default.
- W4206730606 hasAuthorship W4206730606A5039908688 @default.
- W4206730606 hasAuthorship W4206730606A5090253641 @default.
- W4206730606 hasBestOaLocation W42067306061 @default.
- W4206730606 hasConcept C108583219 @default.
- W4206730606 hasConcept C119857082 @default.
- W4206730606 hasConcept C153180895 @default.
- W4206730606 hasConcept C154945302 @default.
- W4206730606 hasConcept C16005928 @default.
- W4206730606 hasConcept C2780564577 @default.
- W4206730606 hasConcept C34736171 @default.
- W4206730606 hasConcept C41008148 @default.
- W4206730606 hasConcept C71924100 @default.
- W4206730606 hasConcept C81363708 @default.
- W4206730606 hasConcept C89600930 @default.
- W4206730606 hasConceptScore W4206730606C108583219 @default.
- W4206730606 hasConceptScore W4206730606C119857082 @default.
- W4206730606 hasConceptScore W4206730606C153180895 @default.
- W4206730606 hasConceptScore W4206730606C154945302 @default.
- W4206730606 hasConceptScore W4206730606C16005928 @default.
- W4206730606 hasConceptScore W4206730606C2780564577 @default.
- W4206730606 hasConceptScore W4206730606C34736171 @default.
- W4206730606 hasConceptScore W4206730606C41008148 @default.
- W4206730606 hasConceptScore W4206730606C71924100 @default.
- W4206730606 hasConceptScore W4206730606C81363708 @default.
- W4206730606 hasConceptScore W4206730606C89600930 @default.
- W4206730606 hasLocation W42067306061 @default.
- W4206730606 hasLocation W42067306062 @default.
- W4206730606 hasLocation W42067306063 @default.
- W4206730606 hasLocation W42067306064 @default.
- W4206730606 hasOpenAccess W4206730606 @default.
- W4206730606 hasPrimaryLocation W42067306061 @default.
- W4206730606 hasRelatedWork W2731899572 @default.
- W4206730606 hasRelatedWork W2790662084 @default.
- W4206730606 hasRelatedWork W2999805992 @default.
- W4206730606 hasRelatedWork W3116150086 @default.
- W4206730606 hasRelatedWork W3133861977 @default.
- W4206730606 hasRelatedWork W4200173597 @default.
- W4206730606 hasRelatedWork W4291897433 @default.
- W4206730606 hasRelatedWork W4312417841 @default.
- W4206730606 hasRelatedWork W4321369474 @default.
- W4206730606 hasRelatedWork W4380075502 @default.