Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206733550> ?p ?o ?g. }
- W4206733550 abstract "<sec> <title>BACKGROUND</title> Electronic health record (EHR) systems generate large datasets that can significantly enrich the development of medical predictive models. Several attempts have been made to investigate the effect of glycated hemoglobin (HbA<sub>1c</sub>) elevation on the prediction of diabetes onset. However, there is still a need for validation of these models using EHR data collected from different populations. </sec> <sec> <title>OBJECTIVE</title> The aim of this study is to perform a replication study to validate, evaluate, and identify the strengths and weaknesses of replicating a predictive model that employed multiple logistic regression with EHR data to forecast the levels of HbA<sub>1c</sub>. The original study used data from a population in the United States and this differentiated replication used a population in Saudi Arabia. </sec> <sec> <title>METHODS</title> A total of 3 models were developed and compared with the model created in the original study. The models were trained and tested using a larger dataset from Saudi Arabia with 36,378 records. The 10-fold cross-validation approach was used for measuring the performance of the models. </sec> <sec> <title>RESULTS</title> Applying the method employed in the original study achieved an accuracy of 74% to 75% when using the dataset collected from Saudi Arabia, compared with 77% obtained from using the population from the United States. The results also show a different ranking of importance for the predictors between the original study and the replication. The order of importance for the predictors with our population, from the most to the least importance, is age, random blood sugar, estimated glomerular filtration rate, total cholesterol, non–high-density lipoprotein, and body mass index. </sec> <sec> <title>CONCLUSIONS</title> This replication study shows that direct use of the models (calculators) created using multiple logistic regression to predict the level of HbA<sub>1c</sub> may not be appropriate for all populations. This study reveals that the weighting of the predictors needs to be calibrated to the population used. However, the study does confirm that replicating the original study using a different population can help with predicting the levels of HbA<sub>1c</sub> by using the predictors that are routinely collected and stored in hospital EHR systems. </sec>" @default.
- W4206733550 created "2022-01-25" @default.
- W4206733550 creator A5017619842 @default.
- W4206733550 creator A5058150486 @default.
- W4206733550 creator A5061755008 @default.
- W4206733550 creator A5064562846 @default.
- W4206733550 date "2020-03-29" @default.
- W4206733550 modified "2023-09-30" @default.
- W4206733550 title "Predicting Current Glycated Hemoglobin Levels in Adults From Electronic Health Records: Validation of Multiple Logistic Regression Algorithm (Preprint)" @default.
- W4206733550 cites W1966716734 @default.
- W4206733550 cites W1967397740 @default.
- W4206733550 cites W1976479368 @default.
- W4206733550 cites W1993220166 @default.
- W4206733550 cites W1996001084 @default.
- W4206733550 cites W2000062521 @default.
- W4206733550 cites W2008900049 @default.
- W4206733550 cites W2013253830 @default.
- W4206733550 cites W2015694004 @default.
- W4206733550 cites W2022119612 @default.
- W4206733550 cites W2045362322 @default.
- W4206733550 cites W2045475280 @default.
- W4206733550 cites W2067002081 @default.
- W4206733550 cites W2076450470 @default.
- W4206733550 cites W2101568662 @default.
- W4206733550 cites W2112200626 @default.
- W4206733550 cites W2115274113 @default.
- W4206733550 cites W2117343153 @default.
- W4206733550 cites W2129390900 @default.
- W4206733550 cites W2129925362 @default.
- W4206733550 cites W2131509822 @default.
- W4206733550 cites W2134194392 @default.
- W4206733550 cites W2137837290 @default.
- W4206733550 cites W2148653691 @default.
- W4206733550 cites W2168261002 @default.
- W4206733550 cites W2313527545 @default.
- W4206733550 cites W2473418344 @default.
- W4206733550 cites W2616009730 @default.
- W4206733550 cites W2791011305 @default.
- W4206733550 cites W2897384275 @default.
- W4206733550 cites W2897944002 @default.
- W4206733550 cites W2960193895 @default.
- W4206733550 cites W2967531581 @default.
- W4206733550 cites W3128371165 @default.
- W4206733550 cites W4241151929 @default.
- W4206733550 cites W4254536587 @default.
- W4206733550 cites W960201800 @default.
- W4206733550 doi "https://doi.org/10.2196/preprints.18963" @default.
- W4206733550 hasPublicationYear "2020" @default.
- W4206733550 type Work @default.
- W4206733550 citedByCount "0" @default.
- W4206733550 crossrefType "posted-content" @default.
- W4206733550 hasAuthorship W4206733550A5017619842 @default.
- W4206733550 hasAuthorship W4206733550A5058150486 @default.
- W4206733550 hasAuthorship W4206733550A5061755008 @default.
- W4206733550 hasAuthorship W4206733550A5064562846 @default.
- W4206733550 hasBestOaLocation W42067335502 @default.
- W4206733550 hasConcept C105795698 @default.
- W4206733550 hasConcept C119857082 @default.
- W4206733550 hasConcept C124101348 @default.
- W4206733550 hasConcept C12590798 @default.
- W4206733550 hasConcept C134018914 @default.
- W4206733550 hasConcept C144024400 @default.
- W4206733550 hasConcept C149923435 @default.
- W4206733550 hasConcept C151956035 @default.
- W4206733550 hasConcept C154945302 @default.
- W4206733550 hasConcept C160735492 @default.
- W4206733550 hasConcept C17744445 @default.
- W4206733550 hasConcept C199539241 @default.
- W4206733550 hasConcept C2777180221 @default.
- W4206733550 hasConcept C2777538456 @default.
- W4206733550 hasConcept C2908647359 @default.
- W4206733550 hasConcept C3019952477 @default.
- W4206733550 hasConcept C3020144179 @default.
- W4206733550 hasConcept C33923547 @default.
- W4206733550 hasConcept C41008148 @default.
- W4206733550 hasConcept C555293320 @default.
- W4206733550 hasConcept C71924100 @default.
- W4206733550 hasConcept C99454951 @default.
- W4206733550 hasConceptScore W4206733550C105795698 @default.
- W4206733550 hasConceptScore W4206733550C119857082 @default.
- W4206733550 hasConceptScore W4206733550C124101348 @default.
- W4206733550 hasConceptScore W4206733550C12590798 @default.
- W4206733550 hasConceptScore W4206733550C134018914 @default.
- W4206733550 hasConceptScore W4206733550C144024400 @default.
- W4206733550 hasConceptScore W4206733550C149923435 @default.
- W4206733550 hasConceptScore W4206733550C151956035 @default.
- W4206733550 hasConceptScore W4206733550C154945302 @default.
- W4206733550 hasConceptScore W4206733550C160735492 @default.
- W4206733550 hasConceptScore W4206733550C17744445 @default.
- W4206733550 hasConceptScore W4206733550C199539241 @default.
- W4206733550 hasConceptScore W4206733550C2777180221 @default.
- W4206733550 hasConceptScore W4206733550C2777538456 @default.
- W4206733550 hasConceptScore W4206733550C2908647359 @default.
- W4206733550 hasConceptScore W4206733550C3019952477 @default.
- W4206733550 hasConceptScore W4206733550C3020144179 @default.
- W4206733550 hasConceptScore W4206733550C33923547 @default.
- W4206733550 hasConceptScore W4206733550C41008148 @default.
- W4206733550 hasConceptScore W4206733550C555293320 @default.
- W4206733550 hasConceptScore W4206733550C71924100 @default.
- W4206733550 hasConceptScore W4206733550C99454951 @default.