Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206788754> ?p ?o ?g. }
- W4206788754 endingPage "e21959" @default.
- W4206788754 startingPage "e21959" @default.
- W4206788754 abstract "For adolescents living with type 1 diabetes (T1D), completion of multiple daily self-management tasks, such as monitoring blood glucose and administering insulin, can be challenging because of psychosocial and contextual barriers. These barriers are hard to assess accurately and specifically by using traditional retrospective recall. Ecological momentary assessment (EMA) uses mobile technologies to assess the contexts, subjective experiences, and psychosocial processes that surround self-management decision-making in daily life. However, the rich data generated via EMA have not been frequently examined in T1D or integrated with machine learning analytic approaches.The goal of this study is to develop a machine learning algorithm to predict the risk of missed self-management in young adults with T1D. To achieve this goal, we train and compare a number of machine learning models through a learned filtering architecture to explore the extent to which EMA data were associated with the completion of two self-management behaviors: mealtime self-monitoring of blood glucose (SMBG) and insulin administration.We analyzed data from a randomized controlled pilot study using machine learning-based filtering architecture to investigate whether novel information related to contextual, psychosocial, and time-related factors (ie, time of day) relate to self-management. We combined EMA-collected contextual and insulin variables via the MyDay mobile app with Bluetooth blood glucose data to construct machine learning classifiers that predicted the 2 self-management behaviors of interest.With 1231 day-level SMBG frequency counts for 45 participants, demographic variables and time-related variables were able to predict whether daily SMBG was below the clinical threshold of 4 times a day. Using the 1869 data points derived from app-based EMA data of 31 participants, our learned filtering architecture method was able to infer nonadherence events with high accuracy and precision. Although the recall score is low, there is high confidence that the nonadherence events identified by the model are truly nonadherent.Combining EMA data with machine learning methods showed promise in the relationship with risk for nonadherence. The next steps include collecting larger data sets that would more effectively power a classifier that can be deployed to infer individual behavior. Improvements in individual self-management insights, behavioral risk predictions, enhanced clinical decision-making, and just-in-time patient support in diabetes could result from this type of approach." @default.
- W4206788754 created "2022-01-26" @default.
- W4206788754 creator A5002150831 @default.
- W4206788754 creator A5023026501 @default.
- W4206788754 creator A5048879571 @default.
- W4206788754 creator A5075383737 @default.
- W4206788754 creator A5082548649 @default.
- W4206788754 creator A5082756362 @default.
- W4206788754 date "2022-03-03" @default.
- W4206788754 modified "2023-10-01" @default.
- W4206788754 title "Using Momentary Assessment and Machine Learning to Identify Barriers to Self-management in Type 1 Diabetes: Observational Study" @default.
- W4206788754 cites W1596717185 @default.
- W4206788754 cites W1689242358 @default.
- W4206788754 cites W1706680883 @default.
- W4206788754 cites W1974473926 @default.
- W4206788754 cites W1979008561 @default.
- W4206788754 cites W1992008368 @default.
- W4206788754 cites W2002353621 @default.
- W4206788754 cites W2007237723 @default.
- W4206788754 cites W2008973833 @default.
- W4206788754 cites W2053724458 @default.
- W4206788754 cites W2071072418 @default.
- W4206788754 cites W2074317187 @default.
- W4206788754 cites W2086585371 @default.
- W4206788754 cites W2090781279 @default.
- W4206788754 cites W2095471474 @default.
- W4206788754 cites W2098570086 @default.
- W4206788754 cites W2111181674 @default.
- W4206788754 cites W2113245969 @default.
- W4206788754 cites W2128000797 @default.
- W4206788754 cites W2130695501 @default.
- W4206788754 cites W2131587651 @default.
- W4206788754 cites W2135281916 @default.
- W4206788754 cites W2138386311 @default.
- W4206788754 cites W2148067809 @default.
- W4206788754 cites W2148143831 @default.
- W4206788754 cites W2152951259 @default.
- W4206788754 cites W2154279165 @default.
- W4206788754 cites W2155002669 @default.
- W4206788754 cites W2162657141 @default.
- W4206788754 cites W2174000925 @default.
- W4206788754 cites W2189952115 @default.
- W4206788754 cites W2301647761 @default.
- W4206788754 cites W2311895041 @default.
- W4206788754 cites W2321609854 @default.
- W4206788754 cites W2341730351 @default.
- W4206788754 cites W2346484181 @default.
- W4206788754 cites W2406067310 @default.
- W4206788754 cites W2476492714 @default.
- W4206788754 cites W2488758846 @default.
- W4206788754 cites W2523801196 @default.
- W4206788754 cites W2529118583 @default.
- W4206788754 cites W2580312941 @default.
- W4206788754 cites W2592063385 @default.
- W4206788754 cites W2605746850 @default.
- W4206788754 cites W2750558025 @default.
- W4206788754 cites W2758000224 @default.
- W4206788754 cites W2769264260 @default.
- W4206788754 cites W2771767445 @default.
- W4206788754 cites W2787649434 @default.
- W4206788754 cites W2791600389 @default.
- W4206788754 cites W2807235612 @default.
- W4206788754 cites W2884017395 @default.
- W4206788754 cites W2884045712 @default.
- W4206788754 cites W2974420848 @default.
- W4206788754 cites W2981182836 @default.
- W4206788754 cites W4235456164 @default.
- W4206788754 doi "https://doi.org/10.2196/21959" @default.
- W4206788754 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35238791" @default.
- W4206788754 hasPublicationYear "2022" @default.
- W4206788754 type Work @default.
- W4206788754 citedByCount "2" @default.
- W4206788754 countsByYear W42067887542023 @default.
- W4206788754 crossrefType "journal-article" @default.
- W4206788754 hasAuthorship W4206788754A5002150831 @default.
- W4206788754 hasAuthorship W4206788754A5023026501 @default.
- W4206788754 hasAuthorship W4206788754A5048879571 @default.
- W4206788754 hasAuthorship W4206788754A5075383737 @default.
- W4206788754 hasAuthorship W4206788754A5082548649 @default.
- W4206788754 hasAuthorship W4206788754A5082756362 @default.
- W4206788754 hasBestOaLocation W42067887541 @default.
- W4206788754 hasConcept C118552586 @default.
- W4206788754 hasConcept C119857082 @default.
- W4206788754 hasConcept C134018914 @default.
- W4206788754 hasConcept C142724271 @default.
- W4206788754 hasConcept C150966472 @default.
- W4206788754 hasConcept C154945302 @default.
- W4206788754 hasConcept C15744967 @default.
- W4206788754 hasConcept C23131810 @default.
- W4206788754 hasConcept C2776217022 @default.
- W4206788754 hasConcept C2777180221 @default.
- W4206788754 hasConcept C41008148 @default.
- W4206788754 hasConcept C555293320 @default.
- W4206788754 hasConcept C71924100 @default.
- W4206788754 hasConcept C75630572 @default.
- W4206788754 hasConceptScore W4206788754C118552586 @default.
- W4206788754 hasConceptScore W4206788754C119857082 @default.
- W4206788754 hasConceptScore W4206788754C134018914 @default.