Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206800059> ?p ?o ?g. }
- W4206800059 endingPage "110669" @default.
- W4206800059 startingPage "110669" @default.
- W4206800059 abstract "To guarantee proper seedbed preparation, it is important to assess and control soil aggregate size in tillage operations. Doing so would lead to higher crop yield and more efficient resource use. This study proposes a portable smartphone-based machine vision system using convolutional neural network (CNN) for the classification of soil texture images taken from 20, 40 and 60 cm heights. The proposed CNN model consists of two blocks with several different layers. The first block (feature extraction) includes Conv, Max-pooling, drop out and batch normalization layers. The second block (classifier) consists of fully connected layers, flatten and SVM classifier. Also in this study, ANN, SVM, RF and KNN algorithms were used to compare the proposed CNN results with other classifiers. The proposed CNN model was able to successfully predict soil images in distances of 20, 40 and 60 cm with the accuracies of 99.89, 99.81 and 99.58%, respectively. The results showed that the best performance was obtained when using fully preprocessed images at the height of 20 cm. Ultimately, a graphical user interface was designed in form of a user-friendly software to predict soil texture based on CNN model. The results revealed the proposed CNN method could quickly and accurately predict the type of soil texture on large scale farms and thus be a good alternative to the costly and time-consuming laboratory methods." @default.
- W4206800059 created "2022-01-26" @default.
- W4206800059 creator A5004478465 @default.
- W4206800059 creator A5007064127 @default.
- W4206800059 creator A5022342785 @default.
- W4206800059 creator A5069580483 @default.
- W4206800059 date "2022-02-01" @default.
- W4206800059 modified "2023-10-12" @default.
- W4206800059 title "Developing an automated monitoring system for fast and accurate prediction of soil texture using an image-based deep learning network and machine vision system" @default.
- W4206800059 cites W1979634018 @default.
- W4206800059 cites W2017210482 @default.
- W4206800059 cites W2054805580 @default.
- W4206800059 cites W2071188448 @default.
- W4206800059 cites W2088553141 @default.
- W4206800059 cites W2118438698 @default.
- W4206800059 cites W2142732534 @default.
- W4206800059 cites W2188183693 @default.
- W4206800059 cites W2194775991 @default.
- W4206800059 cites W2313643463 @default.
- W4206800059 cites W2357131595 @default.
- W4206800059 cites W2501369945 @default.
- W4206800059 cites W2520364485 @default.
- W4206800059 cites W2579348194 @default.
- W4206800059 cites W2600415518 @default.
- W4206800059 cites W2611049304 @default.
- W4206800059 cites W2611227133 @default.
- W4206800059 cites W2790473419 @default.
- W4206800059 cites W2885770726 @default.
- W4206800059 cites W2901663058 @default.
- W4206800059 cites W2909344057 @default.
- W4206800059 cites W2964684799 @default.
- W4206800059 cites W2996480162 @default.
- W4206800059 cites W3000503970 @default.
- W4206800059 cites W3005079959 @default.
- W4206800059 cites W3017390625 @default.
- W4206800059 cites W3020238878 @default.
- W4206800059 cites W3041490948 @default.
- W4206800059 cites W3098424964 @default.
- W4206800059 cites W3127837369 @default.
- W4206800059 cites W3156333129 @default.
- W4206800059 cites W3158601697 @default.
- W4206800059 cites W3160465343 @default.
- W4206800059 cites W3161184525 @default.
- W4206800059 cites W3166545222 @default.
- W4206800059 cites W3187647236 @default.
- W4206800059 cites W3189253367 @default.
- W4206800059 cites W3192455587 @default.
- W4206800059 cites W3194032589 @default.
- W4206800059 cites W3197013437 @default.
- W4206800059 cites W3206203218 @default.
- W4206800059 doi "https://doi.org/10.1016/j.measurement.2021.110669" @default.
- W4206800059 hasPublicationYear "2022" @default.
- W4206800059 type Work @default.
- W4206800059 citedByCount "13" @default.
- W4206800059 countsByYear W42068000592022 @default.
- W4206800059 countsByYear W42068000592023 @default.
- W4206800059 crossrefType "journal-article" @default.
- W4206800059 hasAuthorship W4206800059A5004478465 @default.
- W4206800059 hasAuthorship W4206800059A5007064127 @default.
- W4206800059 hasAuthorship W4206800059A5022342785 @default.
- W4206800059 hasAuthorship W4206800059A5069580483 @default.
- W4206800059 hasConcept C115961682 @default.
- W4206800059 hasConcept C12267149 @default.
- W4206800059 hasConcept C136886441 @default.
- W4206800059 hasConcept C144024400 @default.
- W4206800059 hasConcept C153180895 @default.
- W4206800059 hasConcept C154945302 @default.
- W4206800059 hasConcept C17426736 @default.
- W4206800059 hasConcept C19165224 @default.
- W4206800059 hasConcept C199360897 @default.
- W4206800059 hasConcept C37789001 @default.
- W4206800059 hasConcept C41008148 @default.
- W4206800059 hasConcept C53533937 @default.
- W4206800059 hasConcept C81363708 @default.
- W4206800059 hasConcept C95623464 @default.
- W4206800059 hasConceptScore W4206800059C115961682 @default.
- W4206800059 hasConceptScore W4206800059C12267149 @default.
- W4206800059 hasConceptScore W4206800059C136886441 @default.
- W4206800059 hasConceptScore W4206800059C144024400 @default.
- W4206800059 hasConceptScore W4206800059C153180895 @default.
- W4206800059 hasConceptScore W4206800059C154945302 @default.
- W4206800059 hasConceptScore W4206800059C17426736 @default.
- W4206800059 hasConceptScore W4206800059C19165224 @default.
- W4206800059 hasConceptScore W4206800059C199360897 @default.
- W4206800059 hasConceptScore W4206800059C37789001 @default.
- W4206800059 hasConceptScore W4206800059C41008148 @default.
- W4206800059 hasConceptScore W4206800059C53533937 @default.
- W4206800059 hasConceptScore W4206800059C81363708 @default.
- W4206800059 hasConceptScore W4206800059C95623464 @default.
- W4206800059 hasLocation W42068000591 @default.
- W4206800059 hasOpenAccess W4206800059 @default.
- W4206800059 hasPrimaryLocation W42068000591 @default.
- W4206800059 hasRelatedWork W2041636156 @default.
- W4206800059 hasRelatedWork W2160451891 @default.
- W4206800059 hasRelatedWork W2907729382 @default.
- W4206800059 hasRelatedWork W2995914718 @default.
- W4206800059 hasRelatedWork W3004377704 @default.
- W4206800059 hasRelatedWork W3193301557 @default.