Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206822016> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4206822016 abstract "MicroRNA (miRNA) has became an increasingly important class of attractive drug targets in recent studies. However, there are only few computational tools aiming to predict drugmi-RNA resistance associations. Hence, it is of great significance to develop effective and high accuracy methods for predicting drugmi-RNA resistance associations. In this work, we propose a novel method abbreviated as “DMR-GCN”, which enhances drugmi-RNA resistance interaction prediction by using layer attention graph convolution network and multi channel feature extraction. Specifically, DMR-GCN first constructs a heterogeneous network based on known drug-miRNA interactions, drug-drug similarities and miRNA-miRNA similarities. Secondly, layer attention graph convolution network is used to extract drug representations from the drug molecular graph and the heterogeneous network. We concatenate the extracted representations from molecular graph and heterogeneous network as the drug embedding vectors. Similarly, miRNA representations extracted from the heterogeneous network and the miRNA expression features embedded by MLP are concatenated as the miRNA embedding vectors. Further, we utilize Multi-Layer Perceptron (MLP), Generalized Tensor Factorization (GTF) and Compressed Tensor Network (CTN) to extract node-pair representations from different aspects. Finally, the predictive scores for unobserved drug-miRNA resistance associations are given by a fully connection layer with the integrated embeddings. In the evaluation experiments, DMR-GCN achieves an area under the precision-recall curve of 0.2920 and an area under the receiver-operating characteristic curve of 0.9433, which are better than the state-of-the-art prediction methods. The experimental results demonstrate that layer attention mechanism produces satisfying results for learning representations from graph, and integrating multi channel feature extraction can make further improvements. In conclusion, DMR-GCN is a promising method for predicting drug-miRNA resistance associations." @default.
- W4206822016 created "2022-01-25" @default.
- W4206822016 creator A5029665853 @default.
- W4206822016 creator A5039169879 @default.
- W4206822016 creator A5040596913 @default.
- W4206822016 creator A5074157871 @default.
- W4206822016 creator A5081524222 @default.
- W4206822016 date "2021-12-09" @default.
- W4206822016 modified "2023-09-27" @default.
- W4206822016 title "Predicting Drug-miRNA Resistance with Layer Attention Graph Convolution Network and Multi Channel Feature Extraction" @default.
- W4206822016 cites W1601495365 @default.
- W4206822016 cites W1969198379 @default.
- W4206822016 cites W1980129409 @default.
- W4206822016 cites W2024016490 @default.
- W4206822016 cites W2074370114 @default.
- W4206822016 cites W2089856956 @default.
- W4206822016 cites W2100235918 @default.
- W4206822016 cites W2141222510 @default.
- W4206822016 cites W2142535891 @default.
- W4206822016 cites W2170341042 @default.
- W4206822016 cites W2171757104 @default.
- W4206822016 cites W2393319904 @default.
- W4206822016 cites W2605350416 @default.
- W4206822016 cites W2612812586 @default.
- W4206822016 cites W2747907311 @default.
- W4206822016 cites W2767891136 @default.
- W4206822016 cites W2799341160 @default.
- W4206822016 cites W2914231700 @default.
- W4206822016 cites W2922405516 @default.
- W4206822016 cites W2962398326 @default.
- W4206822016 cites W3024894285 @default.
- W4206822016 cites W3035109558 @default.
- W4206822016 cites W3093030756 @default.
- W4206822016 cites W3105705953 @default.
- W4206822016 doi "https://doi.org/10.1109/bibm52615.2021.9669497" @default.
- W4206822016 hasPublicationYear "2021" @default.
- W4206822016 type Work @default.
- W4206822016 citedByCount "1" @default.
- W4206822016 countsByYear W42068220162023 @default.
- W4206822016 crossrefType "proceedings-article" @default.
- W4206822016 hasAuthorship W4206822016A5029665853 @default.
- W4206822016 hasAuthorship W4206822016A5039169879 @default.
- W4206822016 hasAuthorship W4206822016A5040596913 @default.
- W4206822016 hasAuthorship W4206822016A5074157871 @default.
- W4206822016 hasAuthorship W4206822016A5081524222 @default.
- W4206822016 hasConcept C132525143 @default.
- W4206822016 hasConcept C153180895 @default.
- W4206822016 hasConcept C154945302 @default.
- W4206822016 hasConcept C41008148 @default.
- W4206822016 hasConcept C41608201 @default.
- W4206822016 hasConcept C50644808 @default.
- W4206822016 hasConcept C52622490 @default.
- W4206822016 hasConcept C60908668 @default.
- W4206822016 hasConcept C80444323 @default.
- W4206822016 hasConceptScore W4206822016C132525143 @default.
- W4206822016 hasConceptScore W4206822016C153180895 @default.
- W4206822016 hasConceptScore W4206822016C154945302 @default.
- W4206822016 hasConceptScore W4206822016C41008148 @default.
- W4206822016 hasConceptScore W4206822016C41608201 @default.
- W4206822016 hasConceptScore W4206822016C50644808 @default.
- W4206822016 hasConceptScore W4206822016C52622490 @default.
- W4206822016 hasConceptScore W4206822016C60908668 @default.
- W4206822016 hasConceptScore W4206822016C80444323 @default.
- W4206822016 hasFunder F4320321001 @default.
- W4206822016 hasFunder F4320324775 @default.
- W4206822016 hasLocation W42068220161 @default.
- W4206822016 hasOpenAccess W4206822016 @default.
- W4206822016 hasPrimaryLocation W42068220161 @default.
- W4206822016 hasRelatedWork W1902766772 @default.
- W4206822016 hasRelatedWork W2338394561 @default.
- W4206822016 hasRelatedWork W2413789176 @default.
- W4206822016 hasRelatedWork W2733060750 @default.
- W4206822016 hasRelatedWork W2811390910 @default.
- W4206822016 hasRelatedWork W2946869992 @default.
- W4206822016 hasRelatedWork W3146250456 @default.
- W4206822016 hasRelatedWork W4220672327 @default.
- W4206822016 hasRelatedWork W4221160179 @default.
- W4206822016 hasRelatedWork W2179998186 @default.
- W4206822016 isParatext "false" @default.
- W4206822016 isRetracted "false" @default.
- W4206822016 workType "article" @default.