Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206899027> ?p ?o ?g. }
- W4206899027 abstract "Abstract Traditional methods for ancient mural segmentation have drawbacks, including fuzzy target boundaries and low efficiency. Targeting these problems, this study proposes a pyramid scene parsing MobileNetV2 network (PSP-M) by fusing a deep separable convolution-based lightweight neural network with a multiscale image segmentation model. In this model, deep separable convolution-fused MobileNetV2, as the backbone network, is embedded in the image segmentation model, PSPNet. The pyramid scene parsing structure, particularly owned by the two models, is used to process the background features of images, which aims to reduce feature loss and to improve the efficiency of image feature extraction. In the meantime, atrous convolution is utilized to expand the perceptive field, aiming to ensure the integrity of image semantic information without changing the number of parameters. Compared with traditional image segmentation models, PSP-M increases the average training accuracy by 2%, increases the peak signal-to-noise ratio by 1–2 dB and improves the structural similarity index by 0.1–0.2." @default.
- W4206899027 created "2022-01-26" @default.
- W4206899027 creator A5021115064 @default.
- W4206899027 creator A5030063362 @default.
- W4206899027 creator A5032414381 @default.
- W4206899027 creator A5036128836 @default.
- W4206899027 creator A5072211574 @default.
- W4206899027 date "2022-01-21" @default.
- W4206899027 modified "2023-09-30" @default.
- W4206899027 title "Ancient mural segmentation based on a deep separable convolution network" @default.
- W4206899027 cites W2412782625 @default.
- W4206899027 cites W2558580397 @default.
- W4206899027 cites W2888011474 @default.
- W4206899027 cites W2948264761 @default.
- W4206899027 cites W2959498949 @default.
- W4206899027 cites W2973153063 @default.
- W4206899027 cites W2978206404 @default.
- W4206899027 cites W2997402095 @default.
- W4206899027 cites W2998784017 @default.
- W4206899027 cites W2998847595 @default.
- W4206899027 cites W3003472620 @default.
- W4206899027 cites W3012523934 @default.
- W4206899027 cites W3016840980 @default.
- W4206899027 cites W3016931297 @default.
- W4206899027 cites W3027706702 @default.
- W4206899027 cites W3033205070 @default.
- W4206899027 cites W3039600548 @default.
- W4206899027 cites W3077024029 @default.
- W4206899027 cites W3081455151 @default.
- W4206899027 cites W3095366383 @default.
- W4206899027 cites W3096281486 @default.
- W4206899027 cites W3098670063 @default.
- W4206899027 cites W3100196737 @default.
- W4206899027 cites W3111868612 @default.
- W4206899027 cites W3125444135 @default.
- W4206899027 cites W3135518078 @default.
- W4206899027 cites W3138511383 @default.
- W4206899027 cites W3169807183 @default.
- W4206899027 cites W3173502443 @default.
- W4206899027 cites W3176880348 @default.
- W4206899027 doi "https://doi.org/10.1186/s40494-022-00644-2" @default.
- W4206899027 hasPublicationYear "2022" @default.
- W4206899027 type Work @default.
- W4206899027 citedByCount "3" @default.
- W4206899027 countsByYear W42068990272023 @default.
- W4206899027 crossrefType "journal-article" @default.
- W4206899027 hasAuthorship W4206899027A5021115064 @default.
- W4206899027 hasAuthorship W4206899027A5030063362 @default.
- W4206899027 hasAuthorship W4206899027A5032414381 @default.
- W4206899027 hasAuthorship W4206899027A5036128836 @default.
- W4206899027 hasAuthorship W4206899027A5072211574 @default.
- W4206899027 hasBestOaLocation W42068990271 @default.
- W4206899027 hasConcept C103278499 @default.
- W4206899027 hasConcept C108583219 @default.
- W4206899027 hasConcept C115961682 @default.
- W4206899027 hasConcept C124504099 @default.
- W4206899027 hasConcept C138885662 @default.
- W4206899027 hasConcept C142575187 @default.
- W4206899027 hasConcept C153180895 @default.
- W4206899027 hasConcept C154945302 @default.
- W4206899027 hasConcept C2524010 @default.
- W4206899027 hasConcept C2776401178 @default.
- W4206899027 hasConcept C31972630 @default.
- W4206899027 hasConcept C33923547 @default.
- W4206899027 hasConcept C41008148 @default.
- W4206899027 hasConcept C41895202 @default.
- W4206899027 hasConcept C45347329 @default.
- W4206899027 hasConcept C50644808 @default.
- W4206899027 hasConcept C52622490 @default.
- W4206899027 hasConcept C81363708 @default.
- W4206899027 hasConcept C89600930 @default.
- W4206899027 hasConceptScore W4206899027C103278499 @default.
- W4206899027 hasConceptScore W4206899027C108583219 @default.
- W4206899027 hasConceptScore W4206899027C115961682 @default.
- W4206899027 hasConceptScore W4206899027C124504099 @default.
- W4206899027 hasConceptScore W4206899027C138885662 @default.
- W4206899027 hasConceptScore W4206899027C142575187 @default.
- W4206899027 hasConceptScore W4206899027C153180895 @default.
- W4206899027 hasConceptScore W4206899027C154945302 @default.
- W4206899027 hasConceptScore W4206899027C2524010 @default.
- W4206899027 hasConceptScore W4206899027C2776401178 @default.
- W4206899027 hasConceptScore W4206899027C31972630 @default.
- W4206899027 hasConceptScore W4206899027C33923547 @default.
- W4206899027 hasConceptScore W4206899027C41008148 @default.
- W4206899027 hasConceptScore W4206899027C41895202 @default.
- W4206899027 hasConceptScore W4206899027C45347329 @default.
- W4206899027 hasConceptScore W4206899027C50644808 @default.
- W4206899027 hasConceptScore W4206899027C52622490 @default.
- W4206899027 hasConceptScore W4206899027C81363708 @default.
- W4206899027 hasConceptScore W4206899027C89600930 @default.
- W4206899027 hasIssue "1" @default.
- W4206899027 hasLocation W42068990271 @default.
- W4206899027 hasLocation W42068990272 @default.
- W4206899027 hasOpenAccess W4206899027 @default.
- W4206899027 hasPrimaryLocation W42068990271 @default.
- W4206899027 hasRelatedWork W2279398222 @default.
- W4206899027 hasRelatedWork W2295021132 @default.
- W4206899027 hasRelatedWork W2546942002 @default.
- W4206899027 hasRelatedWork W3148519004 @default.
- W4206899027 hasRelatedWork W3156786002 @default.