Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206915526> ?p ?o ?g. }
- W4206915526 endingPage "1242" @default.
- W4206915526 startingPage "1227" @default.
- W4206915526 abstract "Abstract Many experiments are usually needed to quantify probabilistic fatigue behavior in metals. Previous attempts used separate artificial neural network (ANN) to calculate different probabilistic ranges which can be computationally demanding for building probabilistic fatigue constant life diagram (CLD). Alternatively, we propose using probabilistic neural network (PNNs) which can capture data distribution parameters. The resulted model is generative and can quantify aleatoric uncertainty using a single network. Two tests are presented. The first captures the fatigue life aleatoric uncertainty for P355NL1 steel and successfully builds a probabilistic fatigue CLD. The resulted network is not only more efficient but also provides higher accuracy compared with ANN. To assess fatigue, the second test examines vibrations of a pipework assembly. The proposed methodology quantifies the nonlinear relation between the vibration velocity and the equivalent stress and successfully reflects measurements uncertainties in fatigue assessment. The proposed methodology is published in opensource format ( https://github.com/MShadiNashed/probabilistic-machine-learning-for-fatigue-data )." @default.
- W4206915526 created "2022-01-26" @default.
- W4206915526 creator A5016959403 @default.
- W4206915526 creator A5019102041 @default.
- W4206915526 creator A5022819156 @default.
- W4206915526 creator A5049550067 @default.
- W4206915526 date "2022-01-23" @default.
- W4206915526 modified "2023-09-27" @default.
- W4206915526 title "Using probabilistic neural networks for modeling metal fatigue and random vibration in process pipework" @default.
- W4206915526 cites W1574447377 @default.
- W4206915526 cites W1967111289 @default.
- W4206915526 cites W1973569609 @default.
- W4206915526 cites W1973864349 @default.
- W4206915526 cites W1988720110 @default.
- W4206915526 cites W1990471340 @default.
- W4206915526 cites W2000486725 @default.
- W4206915526 cites W2005931815 @default.
- W4206915526 cites W2006261727 @default.
- W4206915526 cites W2010834180 @default.
- W4206915526 cites W2016736757 @default.
- W4206915526 cites W2020295991 @default.
- W4206915526 cites W2037090034 @default.
- W4206915526 cites W2061804785 @default.
- W4206915526 cites W2071421711 @default.
- W4206915526 cites W2073682763 @default.
- W4206915526 cites W2083733916 @default.
- W4206915526 cites W2085188788 @default.
- W4206915526 cites W2086417558 @default.
- W4206915526 cites W2089811101 @default.
- W4206915526 cites W2118020555 @default.
- W4206915526 cites W2136852963 @default.
- W4206915526 cites W2397262573 @default.
- W4206915526 cites W2555415669 @default.
- W4206915526 cites W2567546888 @default.
- W4206915526 cites W2626215932 @default.
- W4206915526 cites W2626514367 @default.
- W4206915526 cites W2735832167 @default.
- W4206915526 cites W2765914451 @default.
- W4206915526 cites W2793876528 @default.
- W4206915526 cites W2808570238 @default.
- W4206915526 cites W2886486169 @default.
- W4206915526 cites W2898257338 @default.
- W4206915526 cites W2969248019 @default.
- W4206915526 cites W3001709180 @default.
- W4206915526 cites W3004105349 @default.
- W4206915526 cites W3109864797 @default.
- W4206915526 cites W3122080613 @default.
- W4206915526 cites W3127267700 @default.
- W4206915526 cites W904016436 @default.
- W4206915526 doi "https://doi.org/10.1111/ffe.13660" @default.
- W4206915526 hasPublicationYear "2022" @default.
- W4206915526 type Work @default.
- W4206915526 citedByCount "3" @default.
- W4206915526 countsByYear W42069155262022 @default.
- W4206915526 crossrefType "journal-article" @default.
- W4206915526 hasAuthorship W4206915526A5016959403 @default.
- W4206915526 hasAuthorship W4206915526A5019102041 @default.
- W4206915526 hasAuthorship W4206915526A5022819156 @default.
- W4206915526 hasAuthorship W4206915526A5049550067 @default.
- W4206915526 hasConcept C111919701 @default.
- W4206915526 hasConcept C121332964 @default.
- W4206915526 hasConcept C127413603 @default.
- W4206915526 hasConcept C134342201 @default.
- W4206915526 hasConcept C154945302 @default.
- W4206915526 hasConcept C158622935 @default.
- W4206915526 hasConcept C175202392 @default.
- W4206915526 hasConcept C198394728 @default.
- W4206915526 hasConcept C24890656 @default.
- W4206915526 hasConcept C2985278600 @default.
- W4206915526 hasConcept C41008148 @default.
- W4206915526 hasConcept C49937458 @default.
- W4206915526 hasConcept C50644808 @default.
- W4206915526 hasConcept C57341113 @default.
- W4206915526 hasConcept C62520636 @default.
- W4206915526 hasConcept C66938386 @default.
- W4206915526 hasConcept C98045186 @default.
- W4206915526 hasConceptScore W4206915526C111919701 @default.
- W4206915526 hasConceptScore W4206915526C121332964 @default.
- W4206915526 hasConceptScore W4206915526C127413603 @default.
- W4206915526 hasConceptScore W4206915526C134342201 @default.
- W4206915526 hasConceptScore W4206915526C154945302 @default.
- W4206915526 hasConceptScore W4206915526C158622935 @default.
- W4206915526 hasConceptScore W4206915526C175202392 @default.
- W4206915526 hasConceptScore W4206915526C198394728 @default.
- W4206915526 hasConceptScore W4206915526C24890656 @default.
- W4206915526 hasConceptScore W4206915526C2985278600 @default.
- W4206915526 hasConceptScore W4206915526C41008148 @default.
- W4206915526 hasConceptScore W4206915526C49937458 @default.
- W4206915526 hasConceptScore W4206915526C50644808 @default.
- W4206915526 hasConceptScore W4206915526C57341113 @default.
- W4206915526 hasConceptScore W4206915526C62520636 @default.
- W4206915526 hasConceptScore W4206915526C66938386 @default.
- W4206915526 hasConceptScore W4206915526C98045186 @default.
- W4206915526 hasFunder F4320332753 @default.
- W4206915526 hasIssue "4" @default.
- W4206915526 hasLocation W42069155261 @default.
- W4206915526 hasOpenAccess W4206915526 @default.
- W4206915526 hasPrimaryLocation W42069155261 @default.