Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206944530> ?p ?o ?g. }
- W4206944530 endingPage "953" @default.
- W4206944530 startingPage "941" @default.
- W4206944530 abstract "Machine learning techniques have been employed to predict the glass densities of xBi2O3–(70 − x)B2O3–20Li2O–5Sb2O3–5ZnO glasses using a data set of 2000 various B2O3 rich glasses using their chemical composition and ionic radius. The experimental density of present glasses strongly depends on Bi2O3 content which is increasing with bismuth content. The increasing density in bismuth doped glasses because the BO3 are converted into BO4 units, and besides BO3 units are less heavy than the BO4 units. The FTIR studies also confirm that the intensity of B–O–B bond decreasing with increasing Bi2O3 content which suggested that B–O–B bond in bond ring isolated to BO3 units transformed into BO4 units. In Raman Spectra the stretching vibrations of BO4 units shifting towards higher wavelengths with increasing Bi2O3 content. This shifting conforms that there is a structural changes in the glass-matrix and borate units converting from BO3 to BO4 units. The prepared glasses along with B2O3 rich glass data set train on various AI model such as gradient descent, Random Forest regression and Neural Networks to predict present density of glasses. Among the various models RF regression analysis model is successfully acceptable for the glass data with the highest R2 value 0.983 which end result conform that the predicted and experimental values correlated. ANNs stood the effective technique in prediction of glass density with the optimum performance resulting with Tanh as the activation function (R2 = 0.950). The minimum cost 0.018 obtained in the case of gradient decent function which also shows the better performance of regression model." @default.
- W4206944530 created "2022-01-26" @default.
- W4206944530 creator A5021100922 @default.
- W4206944530 creator A5032571732 @default.
- W4206944530 creator A5067651014 @default.
- W4206944530 creator A5082270043 @default.
- W4206944530 creator A5086732894 @default.
- W4206944530 date "2022-01-18" @default.
- W4206944530 modified "2023-10-01" @default.
- W4206944530 title "Density of Bismuth Boro Zinc Glasses Using Machine Learning Techniques" @default.
- W4206944530 cites W1620331902 @default.
- W4206944530 cites W1680303627 @default.
- W4206944530 cites W1970035612 @default.
- W4206944530 cites W1970300200 @default.
- W4206944530 cites W1970457970 @default.
- W4206944530 cites W1981304559 @default.
- W4206944530 cites W1985172239 @default.
- W4206944530 cites W1997373303 @default.
- W4206944530 cites W2004172212 @default.
- W4206944530 cites W2007418896 @default.
- W4206944530 cites W2010322840 @default.
- W4206944530 cites W2022159421 @default.
- W4206944530 cites W2027734957 @default.
- W4206944530 cites W2037358270 @default.
- W4206944530 cites W2045078765 @default.
- W4206944530 cites W2056031013 @default.
- W4206944530 cites W2083170317 @default.
- W4206944530 cites W2214318229 @default.
- W4206944530 cites W2518439596 @default.
- W4206944530 cites W2623897715 @default.
- W4206944530 cites W2792215286 @default.
- W4206944530 cites W2977802644 @default.
- W4206944530 cites W2982611282 @default.
- W4206944530 cites W2996420907 @default.
- W4206944530 cites W3000715477 @default.
- W4206944530 cites W3004038507 @default.
- W4206944530 cites W3014893169 @default.
- W4206944530 cites W3021137363 @default.
- W4206944530 cites W3030593382 @default.
- W4206944530 cites W3033067062 @default.
- W4206944530 cites W3035334466 @default.
- W4206944530 cites W3093039309 @default.
- W4206944530 cites W3101169752 @default.
- W4206944530 cites W3131494232 @default.
- W4206944530 doi "https://doi.org/10.1007/s10904-021-02183-y" @default.
- W4206944530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35069058" @default.
- W4206944530 hasPublicationYear "2022" @default.
- W4206944530 type Work @default.
- W4206944530 citedByCount "16" @default.
- W4206944530 countsByYear W42069445302022 @default.
- W4206944530 countsByYear W42069445302023 @default.
- W4206944530 crossrefType "journal-article" @default.
- W4206944530 hasAuthorship W4206944530A5021100922 @default.
- W4206944530 hasAuthorship W4206944530A5032571732 @default.
- W4206944530 hasAuthorship W4206944530A5067651014 @default.
- W4206944530 hasAuthorship W4206944530A5082270043 @default.
- W4206944530 hasAuthorship W4206944530A5086732894 @default.
- W4206944530 hasBestOaLocation W42069445301 @default.
- W4206944530 hasConcept C113196181 @default.
- W4206944530 hasConcept C120665830 @default.
- W4206944530 hasConcept C121332964 @default.
- W4206944530 hasConcept C134306372 @default.
- W4206944530 hasConcept C178790620 @default.
- W4206944530 hasConcept C185592680 @default.
- W4206944530 hasConcept C191897082 @default.
- W4206944530 hasConcept C192562407 @default.
- W4206944530 hasConcept C199289684 @default.
- W4206944530 hasConcept C2778152352 @default.
- W4206944530 hasConcept C2779889077 @default.
- W4206944530 hasConcept C33923547 @default.
- W4206944530 hasConcept C40003534 @default.
- W4206944530 hasConcept C43617362 @default.
- W4206944530 hasConcept C49040817 @default.
- W4206944530 hasConcept C501308230 @default.
- W4206944530 hasConcept C533668322 @default.
- W4206944530 hasConcept C57863236 @default.
- W4206944530 hasConceptScore W4206944530C113196181 @default.
- W4206944530 hasConceptScore W4206944530C120665830 @default.
- W4206944530 hasConceptScore W4206944530C121332964 @default.
- W4206944530 hasConceptScore W4206944530C134306372 @default.
- W4206944530 hasConceptScore W4206944530C178790620 @default.
- W4206944530 hasConceptScore W4206944530C185592680 @default.
- W4206944530 hasConceptScore W4206944530C191897082 @default.
- W4206944530 hasConceptScore W4206944530C192562407 @default.
- W4206944530 hasConceptScore W4206944530C199289684 @default.
- W4206944530 hasConceptScore W4206944530C2778152352 @default.
- W4206944530 hasConceptScore W4206944530C2779889077 @default.
- W4206944530 hasConceptScore W4206944530C33923547 @default.
- W4206944530 hasConceptScore W4206944530C40003534 @default.
- W4206944530 hasConceptScore W4206944530C43617362 @default.
- W4206944530 hasConceptScore W4206944530C49040817 @default.
- W4206944530 hasConceptScore W4206944530C501308230 @default.
- W4206944530 hasConceptScore W4206944530C533668322 @default.
- W4206944530 hasConceptScore W4206944530C57863236 @default.
- W4206944530 hasIssue "3" @default.
- W4206944530 hasLocation W42069445301 @default.
- W4206944530 hasLocation W42069445302 @default.
- W4206944530 hasLocation W42069445303 @default.