Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206955236> ?p ?o ?g. }
- W4206955236 abstract "Deep learning techniques have the power to identify the degree of modification of high energy jets traversing deconfined QCD matter on a jet-by-jet basis. Such knowledge allows us to study jets based on their initial, rather than final, energy. We show how this new technique provides unique access to the genuine configuration profile of jets over the transverse plane of the nuclear collision, both with respect to their production point and their orientation. By effectively removing the selection biases induced by final-state interactions, one can analyze the potential azimuthal anisotropies of jet production associated to initial-state effects. Additionally, we demonstrate the capability of our new method to locate with precision the production point of a dijet pair in the nuclear overlap region, in what constitutes an important step forward toward the long term quest of using jets as tomographic probes of the quark-gluon plasma." @default.
- W4206955236 created "2022-01-26" @default.
- W4206955236 creator A5015355780 @default.
- W4206955236 creator A5022676474 @default.
- W4206955236 creator A5063256882 @default.
- W4206955236 date "2022-01-05" @default.
- W4206955236 modified "2023-09-27" @default.
- W4206955236 title "Jet Tomography in Heavy-Ion Collisions with Deep Learning" @default.
- W4206955236 cites W1482039524 @default.
- W4206955236 cites W1552937371 @default.
- W4206955236 cites W1607006955 @default.
- W4206955236 cites W1634526300 @default.
- W4206955236 cites W1680837216 @default.
- W4206955236 cites W1756489871 @default.
- W4206955236 cites W1969988425 @default.
- W4206955236 cites W1972263042 @default.
- W4206955236 cites W1973991242 @default.
- W4206955236 cites W2015827430 @default.
- W4206955236 cites W2033197832 @default.
- W4206955236 cites W2047452753 @default.
- W4206955236 cites W2055620782 @default.
- W4206955236 cites W2058491708 @default.
- W4206955236 cites W2087587576 @default.
- W4206955236 cites W2088098699 @default.
- W4206955236 cites W2091928523 @default.
- W4206955236 cites W2100456286 @default.
- W4206955236 cites W2127538769 @default.
- W4206955236 cites W2144083440 @default.
- W4206955236 cites W2147968749 @default.
- W4206955236 cites W2156254274 @default.
- W4206955236 cites W2195368138 @default.
- W4206955236 cites W2221489063 @default.
- W4206955236 cites W2229201817 @default.
- W4206955236 cites W2272415442 @default.
- W4206955236 cites W2464118901 @default.
- W4206955236 cites W2595989266 @default.
- W4206955236 cites W2741179989 @default.
- W4206955236 cites W2744414316 @default.
- W4206955236 cites W2766289110 @default.
- W4206955236 cites W2785694785 @default.
- W4206955236 cites W2786923902 @default.
- W4206955236 cites W2803504845 @default.
- W4206955236 cites W2804812654 @default.
- W4206955236 cites W2888059295 @default.
- W4206955236 cites W2903874475 @default.
- W4206955236 cites W2905045316 @default.
- W4206955236 cites W2913455340 @default.
- W4206955236 cites W2913464465 @default.
- W4206955236 cites W2948540672 @default.
- W4206955236 cites W2951055741 @default.
- W4206955236 cites W3000816258 @default.
- W4206955236 cites W3012380080 @default.
- W4206955236 cites W3037752701 @default.
- W4206955236 cites W3038119593 @default.
- W4206955236 cites W3089420436 @default.
- W4206955236 cites W3098352607 @default.
- W4206955236 cites W3098648312 @default.
- W4206955236 cites W3098881346 @default.
- W4206955236 cites W3100680107 @default.
- W4206955236 cites W3101287617 @default.
- W4206955236 cites W3101363214 @default.
- W4206955236 cites W3102741681 @default.
- W4206955236 cites W3102984630 @default.
- W4206955236 cites W3103328185 @default.
- W4206955236 cites W3104167768 @default.
- W4206955236 cites W3104884423 @default.
- W4206955236 cites W3110705841 @default.
- W4206955236 cites W3121614399 @default.
- W4206955236 cites W3122543598 @default.
- W4206955236 cites W3124932998 @default.
- W4206955236 cites W3133556581 @default.
- W4206955236 cites W3157125909 @default.
- W4206955236 cites W3171547661 @default.
- W4206955236 cites W3202240925 @default.
- W4206955236 doi "https://doi.org/10.1103/physrevlett.128.012301" @default.
- W4206955236 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35061476" @default.
- W4206955236 hasPublicationYear "2022" @default.
- W4206955236 type Work @default.
- W4206955236 citedByCount "12" @default.
- W4206955236 countsByYear W42069552362022 @default.
- W4206955236 countsByYear W42069552362023 @default.
- W4206955236 crossrefType "journal-article" @default.
- W4206955236 hasAuthorship W4206955236A5015355780 @default.
- W4206955236 hasAuthorship W4206955236A5022676474 @default.
- W4206955236 hasAuthorship W4206955236A5063256882 @default.
- W4206955236 hasBestOaLocation W42069552361 @default.
- W4206955236 hasConcept C109214941 @default.
- W4206955236 hasConcept C119947313 @default.
- W4206955236 hasConcept C120665830 @default.
- W4206955236 hasConcept C121332964 @default.
- W4206955236 hasConcept C127413603 @default.
- W4206955236 hasConcept C13280743 @default.
- W4206955236 hasConcept C154954056 @default.
- W4206955236 hasConcept C159737794 @default.
- W4206955236 hasConcept C176809094 @default.
- W4206955236 hasConcept C17825722 @default.
- W4206955236 hasConcept C185544564 @default.
- W4206955236 hasConcept C205649164 @default.
- W4206955236 hasConcept C2292967 @default.
- W4206955236 hasConcept C2524010 @default.