Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206956273> ?p ?o ?g. }
- W4206956273 endingPage "131" @default.
- W4206956273 startingPage "122" @default.
- W4206956273 abstract "Abstract The academic performance of students is essential for academic progression at all levels of education. However, the availability of several cognitive and non-cognitive factors that influence students’ academic performance makes it challenging for academic authorities to use conventional analytical tools to extract hidden knowledge in educational data. Therefore, Educational Data Mining (EDM) requires computational techniques to simplify planning and determining students who might be at risk of failing or dropping from school due to academic performance, thus helping resolve student retention. The paper studies several cognitive and non-cognitive factors such as academic, demographic, social and behavioural and their effect on student academic performance using machine learning algorithms. Heterogenous lazy and eager machine learning classifiers, including Decision Tree (DT), K -Nearest-Neighbour (KNN), Artificial Neural Network (ANN), Logistic Regression (LR), Random Forest (RF), AdaBoost and Support Vector Machine (SVM) were adopted and training was performed based on k-fold ( k = 10) and leave-one-out cross-validation. We evaluated their predictive performance using well-known evaluation metrics like Area under Curve (AUC), F-1 score, Precision, Accuracy, Kappa, Matthew’s correlation coefficient (MCC) and Recall. The study outcome shows that Student Absence Days (SAD) are the most significant predictor of students’ academic performance. In terms of prediction accuracy and AUC, the RF (Acc = 0.771, AUC = 0.903), LR (Acc = 0.779, AUC = 0.90) and ANN (Acc = 0.760, AUC = 0.895) outperformed all other algorithms (KNN (Acc = 0.638, AUC = 0.826), SVM (Acc = 0.727, AUC = 0.80), DT (Acc = 0.733, AUC = 0.876) and AdaBoost (Acc = 0.748, AUC = 0.808)), making them more suitable for predicting students’ academic performance." @default.
- W4206956273 created "2022-01-26" @default.
- W4206956273 creator A5019060398 @default.
- W4206956273 creator A5041504438 @default.
- W4206956273 creator A5054909949 @default.
- W4206956273 creator A5076595419 @default.
- W4206956273 creator A5082183732 @default.
- W4206956273 date "2021-12-01" @default.
- W4206956273 modified "2023-10-16" @default.
- W4206956273 title "Academic Performance Modelling with Machine Learning Based on Cognitive and Non-Cognitive Features" @default.
- W4206956273 cites W2109548438 @default.
- W4206956273 cites W2162797630 @default.
- W4206956273 cites W2199534480 @default.
- W4206956273 cites W2561862420 @default.
- W4206956273 cites W2615819587 @default.
- W4206956273 cites W2753540178 @default.
- W4206956273 cites W2775916869 @default.
- W4206956273 cites W2789635809 @default.
- W4206956273 cites W2795997241 @default.
- W4206956273 cites W2901472099 @default.
- W4206956273 cites W2943695427 @default.
- W4206956273 cites W2965017818 @default.
- W4206956273 cites W2969886070 @default.
- W4206956273 cites W2992692411 @default.
- W4206956273 cites W3002685882 @default.
- W4206956273 cites W3003695670 @default.
- W4206956273 cites W3005048680 @default.
- W4206956273 cites W3010859569 @default.
- W4206956273 cites W3013734981 @default.
- W4206956273 cites W3015351929 @default.
- W4206956273 cites W3016468730 @default.
- W4206956273 cites W3021058087 @default.
- W4206956273 cites W3033606177 @default.
- W4206956273 cites W3038622338 @default.
- W4206956273 cites W3042029410 @default.
- W4206956273 cites W3096278480 @default.
- W4206956273 cites W3105430099 @default.
- W4206956273 cites W3132138386 @default.
- W4206956273 cites W3135028703 @default.
- W4206956273 cites W3136117268 @default.
- W4206956273 cites W3213169196 @default.
- W4206956273 cites W4210888658 @default.
- W4206956273 cites W4253579007 @default.
- W4206956273 doi "https://doi.org/10.2478/acss-2021-0015" @default.
- W4206956273 hasPublicationYear "2021" @default.
- W4206956273 type Work @default.
- W4206956273 citedByCount "4" @default.
- W4206956273 countsByYear W42069562732022 @default.
- W4206956273 countsByYear W42069562732023 @default.
- W4206956273 crossrefType "journal-article" @default.
- W4206956273 hasAuthorship W4206956273A5019060398 @default.
- W4206956273 hasAuthorship W4206956273A5041504438 @default.
- W4206956273 hasAuthorship W4206956273A5054909949 @default.
- W4206956273 hasAuthorship W4206956273A5076595419 @default.
- W4206956273 hasAuthorship W4206956273A5082183732 @default.
- W4206956273 hasBestOaLocation W42069562731 @default.
- W4206956273 hasConcept C119857082 @default.
- W4206956273 hasConcept C12267149 @default.
- W4206956273 hasConcept C141404830 @default.
- W4206956273 hasConcept C145420912 @default.
- W4206956273 hasConcept C151956035 @default.
- W4206956273 hasConcept C154945302 @default.
- W4206956273 hasConcept C15744967 @default.
- W4206956273 hasConcept C169258074 @default.
- W4206956273 hasConcept C169760540 @default.
- W4206956273 hasConcept C169900460 @default.
- W4206956273 hasConcept C2781206393 @default.
- W4206956273 hasConcept C41008148 @default.
- W4206956273 hasConcept C50644808 @default.
- W4206956273 hasConcept C84525736 @default.
- W4206956273 hasConceptScore W4206956273C119857082 @default.
- W4206956273 hasConceptScore W4206956273C12267149 @default.
- W4206956273 hasConceptScore W4206956273C141404830 @default.
- W4206956273 hasConceptScore W4206956273C145420912 @default.
- W4206956273 hasConceptScore W4206956273C151956035 @default.
- W4206956273 hasConceptScore W4206956273C154945302 @default.
- W4206956273 hasConceptScore W4206956273C15744967 @default.
- W4206956273 hasConceptScore W4206956273C169258074 @default.
- W4206956273 hasConceptScore W4206956273C169760540 @default.
- W4206956273 hasConceptScore W4206956273C169900460 @default.
- W4206956273 hasConceptScore W4206956273C2781206393 @default.
- W4206956273 hasConceptScore W4206956273C41008148 @default.
- W4206956273 hasConceptScore W4206956273C50644808 @default.
- W4206956273 hasConceptScore W4206956273C84525736 @default.
- W4206956273 hasIssue "2" @default.
- W4206956273 hasLocation W42069562731 @default.
- W4206956273 hasLocation W42069562732 @default.
- W4206956273 hasOpenAccess W4206956273 @default.
- W4206956273 hasPrimaryLocation W42069562731 @default.
- W4206956273 hasRelatedWork W1996541855 @default.
- W4206956273 hasRelatedWork W3146991051 @default.
- W4206956273 hasRelatedWork W4239706975 @default.
- W4206956273 hasRelatedWork W4280583453 @default.
- W4206956273 hasRelatedWork W4283313480 @default.
- W4206956273 hasRelatedWork W4321636153 @default.
- W4206956273 hasRelatedWork W4367335893 @default.
- W4206956273 hasRelatedWork W4381414210 @default.
- W4206956273 hasRelatedWork W4383535405 @default.