Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206989813> ?p ?o ?g. }
- W4206989813 endingPage "1422" @default.
- W4206989813 startingPage "1417" @default.
- W4206989813 abstract "Future OncologyVol. 18, No. 12 CommentaryIssues and challenges to reproducibility of cancer research: a commentaryJaime A Teixeira da SilvaJaime A Teixeira da Silva*Author for correspondence: E-mail Address: jaimetex@yahoo.comIndependent researcher, P.O. Box 7, Ikenobe 3011-2, Kagawa-ken, 761-0799, JapanSearch for more papers by this authorPublished Online:24 Jan 2022https://doi.org/10.2217/fon-2021-1378AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: cancermisconductoncologypaper millspublication biasreproducibility crisisPapers of special note have been highlighted as: • of interest; •• of considerable interestReferences1. Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). • A useful summary of cancer-related mortality across multiple cancer types.Crossref, Medline, Google Scholar2. Cao W, Chen HD, Yu YW et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chinese Med. J. 134(7), 783–791 (2021).Crossref, Medline, Google Scholar3. Zhao TY, Dai TC, Lun ZJ et al. An analysis of recently retracted articles by authors affiliated with hospitals in mainland China. J. Scholarly Publ. 52(2), 107–122 (2021).Crossref, Google Scholar4. Wasiak J, Hamilton DG, Foroudi F et al. Surveying retracted studies and notices within the field of radiation oncology. Int. J. Rad. Oncol. Biol. Phys. 102(3), 660–665 (2018).Crossref, Medline, Google Scholar5. Pantziarka P, Meheus L. Journal retractions in oncology: a bibliometric study. Future Oncol. 15(31), 3597–3608 (2019). • A recent global assessment of retractions in the cancer- and oncology-related literature.Link, CAS, Google Scholar6. Retraction Watch. Database v. 1.0.6.0 (2022). http://retractiondatabase.org/RetractionSearch.aspx • A useful resource for appreciating almost real-time status of retractions in the cancer- and oncology-related literature.Google Scholar7. Schattner E. Can cancer truths be told? Challenges for medical journalism. Am. Soc. Clin. Oncol. Educ. Book. 37, 3–11 (2017).Crossref, Medline, Google Scholar8. Moorhead L, Krakow M, Maggio L. What cancer research makes the news? A quantitative analysis of online news stories that mention cancer studies. PLoS ONE 16(3), e0247553 (2021). • An important appreciation of the link between the cancer- and oncology-related literature and media coverage, including erroneous coverage, and hype.Crossref, Medline, CAS, Google Scholar9. Fiala C, Diamandis EP. Benign and malignant scientific irreproducibility. Clin. Biochem. 55, 1–2 (2018).Crossref, Medline, Google Scholar10. Kulasingam V, Prassas I, Diamandis EP. Towards personalized tumor markers. NPJ Precision Oncol. 1(1), 17 (2017).Crossref, Medline, Google Scholar11. Filippou P, Diamandis EP. Half-century of cancer biomarkers: lessons from the past and projections for the future. J. Appl. Lab. Med. 2(2), 288–290 (2017).Crossref, Medline, CAS, Google Scholar12. Teixeira da Silva JA. Paper mill-derived cancer research: the improbability of prostate cancer in women, and ovarian and breast cancer in men. Nowotwory. J. Oncol. 71(4), 255–256 (2021).Crossref, Google Scholar13. Rivera H, Teixeira da Silva JA. Retractions, fake peer review, and paper mills. J. Kor. Med. Sci. 36(24), e165 (2021). • A general appreciation of recent publishing-related risks associated with the integrity of cancer- and oncology-related literature.Crossref, Medline, Google Scholar14. Boulbes DR, Costello T, Baggerly K et al. A survey on data reproducibility and the effect of publication process on the ethical reporting of laboratory research. Clin. Cancer Res. 24(14), 3447–3455 (2018).Crossref, Medline, Google Scholar15. Wass MN, Ray L, Michaelis M. Understanding of researcher behavior is required to improve data reliability. GigaScience 8(5), giz017 (2019).Crossref, Medline, Google Scholar16. Hudson R. Should we strive to make science bias-free? A philosophical assessment of the reproducibility crisis. J. Gen. Philos. Sci. 52(3), 389–405 (2021).Crossref, Medline, Google Scholar17. Errington TM, Iorns E, Gunn W et al. An open investigation of the reproducibility of cancer biology research. eLife 3, e04333 (2014).Crossref, Google Scholar18. Pantziarka P, Verbaanderd C, Meheus L. Biased by design? Clinical trials and patient benefit in oncology. Future Oncol. 16(3), 4419–4423 (2020). • An essential discussion of the issue of bias in cancer clinical trials.Link, CAS, Google Scholar19. COS (Center for Open Science). Reproducibility Project: Cancer Biology (2022). www.cos.io/rpcb Google Scholar20. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10(9), 712 (2011).Crossref, Medline, CAS, Google Scholar21. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature 483(7391), 531–533 (2012).Crossref, Medline, CAS, Google Scholar22. Mobley A, Linder SK, Braeuer R et al. A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. PLoS ONE 8(5), e63221 (2013).Crossref, Medline, CAS, Google Scholar23. Wen H, Wang HY, He X et al. On the low reproducibility of cancer studies. Natl Sci. Rev. 5(5), 619–624 (2018). • A rare, but important, important perspective originating from China.Crossref, Medline, Google Scholar24. Kandela I, Jin HY, Owen K et al. Registered report: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. eLife 4, e07072 (2015).Crossref, Medline, Google Scholar25. Delmore JE, Issa GC, Lemieux ME et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6), 904–917 (2011).Crossref, Medline, CAS, Google Scholar26. Sun L, Gao P. Small molecules remain on target for c-Myc. eLife 6, e22915 (2017).Crossref, Medline, Google Scholar27. Madden SK, de Araujo AD, Gerhardt M et al. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer 20(1), 3 (2021).Crossref, Medline, Google Scholar28. Aird F, Kandela I, Mantis C et al. Replication study: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. eLife 6, e21253 (2017);Crossref, Medline, Google Scholar29. Kandela I, Aird F, Reproducibility Project: Cancer Biology. Replication study: discovery and preclinical validation of drug indications using compendia of public gene expression data. eLife 6, e17044 (2017).Crossref, Medline, Google Scholar30. Sirota M, Dudley JT, Kim J et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Translat. Med. 3(96), 96ra77 (2011).Crossref, Medline, CAS, Google Scholar31. Van Dang C. Mixed outcomes for computational predictions. eLife 6, e22661 (2017).Crossref, Medline, Google Scholar32. Lewis LM, Edwards MC, Meyers ZR et al. Replication study: transcriptional amplification in tumor cells with elevated c-Myc. eLife 7, e30274 (2018).Crossref, Medline, Google Scholar33. Lin CY, Lovén J, Rahl PB et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151(1), 56–67 (2012).Crossref, Medline, CAS, Google Scholar34. Eick D. Getting to grips with c-Myc. eLife 7, e32010 (2018).Crossref, Medline, Google Scholar35. Horrigan SK, Courville P, Sampey D et al. Replication study: melanoma genome sequencing reveals frequent PREX2 mutations. eLife 6, e21634 (2017).Crossref, Medline, Google Scholar36. Berger MF, Hodis E, Heffernan TP et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485(7399), 502–506 (2012).Crossref, Medline, CAS, Google Scholar37. Davis RJ. Melanoma mystery. eLife 6, e22662 (2017).Crossref, Medline, Google Scholar38. Reproducibility Project: Cancer Biology. Horrigan SK. Replication study: the CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. eLife 6, e18173 (2017).Crossref, Medline, Google Scholar39. Willingham SB, Volkmer JP, Gentles AJ et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA. 109(17), 6662–6667 (2012).Crossref, Medline, CAS, Google Scholar40. Sheen MR, Fields JL, Northan B et al. Replication study: biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. eLife 8, e45120 (2019).Crossref, Medline, CAS, Google Scholar41. Goetz JG, Minguet S, Navarro-Lérida I et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1), 148–163 (2011).Crossref, Medline, CAS, Google Scholar42. Friedl P. Rethinking research into metastasis. eLife 8, e53511 (2019).Crossref, Medline, CAS, Google Scholar43. Mantis C, Kandela I, Aird F et al. Replication study: coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. eLife 6, e17584 (2017).Crossref, Medline, Google Scholar44. Sugahara KN, Teesalu T, Karmali PP et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981), 1031–1035 (2010).Crossref, Medline, CAS, Google Scholar45. eLife Editorial. The challenges of replication. eLife 6, e23693 (2017).Crossref, Medline, Google Scholar46. Baker M, Dolgin E. Cancer reproducibility project releases first results. Nature 541(7637), 269–270 (2017).Crossref, Medline, CAS, Google Scholar47. Benjamin D, Mandel DR, Kimmelman J. Can cancer researchers accurately judge whether preclinical reports will reproduce? PLoS Biol. 15(6), e2002212 (2017).Crossref, Medline, Google Scholar48. Khan I, Kerwin J, Owen K et al. Registered report: a coding-independent function of gene and pseudogene mRNAs regulates tumour biology. eLife 4, e08245 (2015); • A Reproducibility Project: Cancer Biology–related paper with multiple errors, indicating that even reproducibility studies are fallible.Crossref, Google Scholar49. Poliseno L, Salmena L, Zhang J et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301), 1033–1038 (2010).Crossref, Medline, CAS, Google Scholar50. Calin GA. Pseudogenes, RNAs and new reproducibility norms. eLife 9, e56397 (2020).Crossref, Medline, Google Scholar51. Finak G, Mayer B, Fulp W et al. DataPackageR: reproducible data preprocessing, standardization and sharing using R/Bioconductor for collaborative data analysis. Gates Open Res. 2, 31 (2018).Crossref, Medline, Google Scholar52. Nosek BA, Errington TM. Making sense of replications. eLife 6, e23383 (2017).Crossref, Medline, Google Scholar53. Ioannidis JPA. The reproducibility wars: successful, unsuccessful, uninterpretable, exact, conceptual, triangulated, contested replication. Clin. Chem. 63(5), 943–945 (2017). •• An important broad assessment of the issue of replication, central to cancer (and other) science's reproducibility.Crossref, Medline, CAS, Google Scholar54. Amaral OB, Neves K, Wasilewska-Sampaio AP et al. The Brazilian Reproducibility Initiative. eLife 8, e41602 (2019).Crossref, Medline, Google Scholar55. Amaral OB, Neves K. Reproducibility: expect less of the scientific paper. Nature 597(7876), 329–331 (2021).Crossref, Medline, CAS, Google Scholar56. Hatzis C, Bedard PL, Birkbak NJ et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74(15), 4016–4023 (2014).Crossref, Medline, CAS, Google Scholar57. Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nature Rev. Cancer 17(12), 751–765 (2017).Crossref, Medline, CAS, Google Scholar58. Niepel M, Hafner M, Mills CE et al. A multi-center study on the reproducibility of drug-response assays in mammalian cell lines. Cell Systems 9(1), 35–48.e5 (2019).Crossref, Medline, CAS, Google Scholar59. Munkácsy G, Herman P, Győrffy B. Independent validation of induced overexpression efficiency across 242 experiments shows a success rate of 39. Sci. Rep. 9(1), 343 (2019).Crossref, Medline, Google Scholar60. Byrne JA, Grima N, Capes-Davis A et al. The possibility of systematic research fraud targeting under-studied human genes: causes, consequences, and potential solutions. Biomark. Insights 14, 1–12 (2019).Crossref, Google Scholar61. Byrne JA, Park Y, West RA et al. The thin ret(raction) line: biomedical journal responses to incorrect non-targeting nucleotide sequence reagents in human gene knockdown publications. Scientometrics 126(6), 3513–3534 (2021).Crossref, CAS, Google Scholar62. Ward JM, Schofield PN, Sundberg JP. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab. Anim. 46(4), 146–151 (2017).Crossref, Google Scholar63. Van Dang C. Reimagining the path to reproducibility for cancer research. Cancer Res. 80(17), 3449–3450 (2020).Crossref, Medline, CAS, Google Scholar64. He Y, Yuan CF, Chen LC et al. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action. Int. J. Med. Sci. 15(4), 309–322 (2018).Crossref, Medline, CAS, Google Scholar65. Morrison SJ. Time to do something about reproducibility. eLife 3, e03981 (2014).Crossref, Google Scholar66. Hofseth LJ. Getting rigorous with scientific rigor. Carcinogenesis 39(1), 21–25 (2018).Crossref, Medline, CAS, Google Scholar67. NIH (National Institutes of Health). Francis Collins to step down as director of the National Institutes of Health (2021). www.nih.gov/news-events/news-releases/francis-collins-step-down-director-national-institutes-health?ftag=YHF4eb9d17Google Scholar68. Errington TM, Mathur M, Soderberg CK et al. Investigating the replicability of preclinical cancer biology. eLife 10, e71601 (2021). •• The definitive source summary of Reproducibility Project: Cancer Biology by the project leaders.Crossref, Medline, Google Scholar69. PubMed. Cancer [or] oncology (2022). https://pubmed.ncbi.nlm.nih.gov/?term=cancer+oncology Google Scholar70. Bozzo A, Bali K, Evaniew N et al. Retractions in cancer research: a systematic survey. Res. Integr. Peer Rev. 2, 5 (2017).Crossref, Medline, Google ScholarFiguresReferencesRelatedDetailsCited ByTumor Biology's struggle to survive: A tough lesson for cancer and oncology research journals7 April 2022 | Forum of Clinical Oncology, Vol. 0, No. 0 Vol. 18, No. 12 eToC Sign up Follow us on social media for the latest updates Metrics Downloaded 80 times History Received 23 October 2021 Accepted 11 January 2022 Published online 24 January 2022 Published in print April 2022 Information© 2022 Future Medicine LtdKeywordscancermisconductoncologypaper millspublication biasreproducibility crisisFinancial & competing interests disclosureThe author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W4206989813 created "2022-01-26" @default.
- W4206989813 creator A5087016011 @default.
- W4206989813 date "2022-04-01" @default.
- W4206989813 modified "2023-10-17" @default.
- W4206989813 title "Issues and challenges to reproducibility of cancer research: a commentary" @default.
- W4206989813 cites W1966217032 @default.
- W4206989813 cites W1966498224 @default.
- W4206989813 cites W1987777080 @default.
- W4206989813 cites W2002498877 @default.
- W4206989813 cites W2008621428 @default.
- W4206989813 cites W2044339772 @default.
- W4206989813 cites W2067833766 @default.
- W4206989813 cites W2070441922 @default.
- W4206989813 cites W2120572492 @default.
- W4206989813 cites W2123647020 @default.
- W4206989813 cites W2137632714 @default.
- W4206989813 cites W2142148275 @default.
- W4206989813 cites W2149793889 @default.
- W4206989813 cites W2161577298 @default.
- W4206989813 cites W2170434665 @default.
- W4206989813 cites W2572646816 @default.
- W4206989813 cites W2573642921 @default.
- W4206989813 cites W2573865958 @default.
- W4206989813 cites W2574046987 @default.
- W4206989813 cites W2574981959 @default.
- W4206989813 cites W2575775275 @default.
- W4206989813 cites W2576511285 @default.
- W4206989813 cites W2577101744 @default.
- W4206989813 cites W2578098988 @default.
- W4206989813 cites W2601618660 @default.
- W4206989813 cites W2604029242 @default.
- W4206989813 cites W2613383989 @default.
- W4206989813 cites W2615928194 @default.
- W4206989813 cites W2623676671 @default.
- W4206989813 cites W2732894280 @default.
- W4206989813 cites W2748571563 @default.
- W4206989813 cites W2752895005 @default.
- W4206989813 cites W2766363222 @default.
- W4206989813 cites W2782642204 @default.
- W4206989813 cites W2789884609 @default.
- W4206989813 cites W2792030746 @default.
- W4206989813 cites W2794643990 @default.
- W4206989813 cites W2797795519 @default.
- W4206989813 cites W2809741284 @default.
- W4206989813 cites W2888142350 @default.
- W4206989813 cites W2901258965 @default.
- W4206989813 cites W2912593642 @default.
- W4206989813 cites W2913105439 @default.
- W4206989813 cites W2914992144 @default.
- W4206989813 cites W2932932143 @default.
- W4206989813 cites W2959521790 @default.
- W4206989813 cites W2995552907 @default.
- W4206989813 cites W2995624998 @default.
- W4206989813 cites W2995629464 @default.
- W4206989813 cites W3016924331 @default.
- W4206989813 cites W3082356277 @default.
- W4206989813 cites W3109004530 @default.
- W4206989813 cites W3119778649 @default.
- W4206989813 cites W3128646645 @default.
- W4206989813 cites W3134454984 @default.
- W4206989813 cites W3134553072 @default.
- W4206989813 cites W3135225098 @default.
- W4206989813 cites W3158056354 @default.
- W4206989813 cites W3166098902 @default.
- W4206989813 cites W3169147376 @default.
- W4206989813 cites W3200473879 @default.
- W4206989813 cites W4200247206 @default.
- W4206989813 cites W4241881116 @default.
- W4206989813 cites W4249760982 @default.
- W4206989813 cites W4252757833 @default.
- W4206989813 cites W4256519560 @default.
- W4206989813 doi "https://doi.org/10.2217/fon-2021-1378" @default.
- W4206989813 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35068184" @default.
- W4206989813 hasPublicationYear "2022" @default.
- W4206989813 type Work @default.
- W4206989813 citedByCount "3" @default.
- W4206989813 countsByYear W42069898132022 @default.
- W4206989813 countsByYear W42069898132023 @default.
- W4206989813 crossrefType "journal-article" @default.
- W4206989813 hasAuthorship W4206989813A5087016011 @default.
- W4206989813 hasConcept C105795698 @default.
- W4206989813 hasConcept C121608353 @default.
- W4206989813 hasConcept C126322002 @default.
- W4206989813 hasConcept C19527891 @default.
- W4206989813 hasConcept C33923547 @default.
- W4206989813 hasConcept C71924100 @default.
- W4206989813 hasConcept C9893847 @default.
- W4206989813 hasConceptScore W4206989813C105795698 @default.
- W4206989813 hasConceptScore W4206989813C121608353 @default.
- W4206989813 hasConceptScore W4206989813C126322002 @default.
- W4206989813 hasConceptScore W4206989813C19527891 @default.
- W4206989813 hasConceptScore W4206989813C33923547 @default.
- W4206989813 hasConceptScore W4206989813C71924100 @default.
- W4206989813 hasConceptScore W4206989813C9893847 @default.
- W4206989813 hasIssue "12" @default.
- W4206989813 hasLocation W42069898131 @default.
- W4206989813 hasLocation W42069898132 @default.