Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206990535> ?p ?o ?g. }
- W4206990535 endingPage "127512" @default.
- W4206990535 startingPage "127512" @default.
- W4206990535 abstract "• Streamflow and hydropower potential maps for small basins generated using ANNs. • Proposed ANNs showed high robustness for disinformative inputs and multicollinearity. • The proposed ANNs for Japan outperformed a previous strong global ANNs model. • Hydropower potential map corresponded to location and output of existing plants. • Hydropower potential map is consistent with the history of electric power in Japan. Japan recently introduced a feed-in tariff for small-scale hydropower plants, promoting the development of run-of-river hydropower plants in small-sized basins; however, appropriate implementation requires gauging station streamflow data at substantial costs and time (i.e., more than several years). Thus, in this study, we generated streamflow maps for small-sized basins (∼10 km 2 ) throughout Japan using artificial neural networks (ANNs). Modeled output streamflow characteristics relied upon the input variables obtained from 176 basin characteristics and consisted of mean annual streamflow (Q MEAN ), daily streamflow indices in a flow duration curve (Q D ), and a water volume index for run-of-river hydropower energy production (W D95 ). We preliminarily investigated the impacts of selecting the input variables obtained from 176 basin characteristics on performances of the ANNs, which indicated that the ANNs showed high robustness for disinformative input variables and multicollinearity between input variables. Although Q MEAN , high Q D , and W D95 performed well, low Q D were inadequate, possibly due to snowmelt contributions and small catchment sizes obstructing the detection of geological impacts. To accurately estimate the streamflow characteristics throughout Japan, we emphasize the importance of developing robust methods for correcting wind-induced precipitation undercatch and a spatial interpolation for precipitation in high-montane areas. Nevertheless, the ANNs for Japan proposed herein significantly outperformed a previous study exhibiting excellent global-scale ability. A map expressing run-of-river hydropower potential in small-sized basins was generated and closely corresponded to the spatial distribution and electrical output of existing hydropower plants. Furthermore, we demonstrated that the hydropower potential map reproduces the hydropower developments corresponding to the history of the electric power systems in Japan, which reflects its high reliability. Therefore, the hydropower potential map can greatly aid the exploration of optimal sites for hydropower developments." @default.
- W4206990535 created "2022-01-26" @default.
- W4206990535 creator A5043508651 @default.
- W4206990535 creator A5044799170 @default.
- W4206990535 creator A5058529560 @default.
- W4206990535 date "2022-04-01" @default.
- W4206990535 modified "2023-09-25" @default.
- W4206990535 title "Streamflow maps for run-of-river hydropower developments in Japan" @default.
- W4206990535 cites W1607186009 @default.
- W4206990535 cites W1744528052 @default.
- W4206990535 cites W1795688558 @default.
- W4206990535 cites W1834525487 @default.
- W4206990535 cites W1881971471 @default.
- W4206990535 cites W1897172209 @default.
- W4206990535 cites W1964308722 @default.
- W4206990535 cites W1975921100 @default.
- W4206990535 cites W1988176470 @default.
- W4206990535 cites W1989729837 @default.
- W4206990535 cites W1992029389 @default.
- W4206990535 cites W2002796628 @default.
- W4206990535 cites W2006171285 @default.
- W4206990535 cites W2012349042 @default.
- W4206990535 cites W2036589198 @default.
- W4206990535 cites W2054637042 @default.
- W4206990535 cites W2058597483 @default.
- W4206990535 cites W2064807406 @default.
- W4206990535 cites W2071759275 @default.
- W4206990535 cites W2075854281 @default.
- W4206990535 cites W2079387008 @default.
- W4206990535 cites W2082096457 @default.
- W4206990535 cites W2083742543 @default.
- W4206990535 cites W2091960994 @default.
- W4206990535 cites W2099331417 @default.
- W4206990535 cites W2126223688 @default.
- W4206990535 cites W2127510738 @default.
- W4206990535 cites W2136742519 @default.
- W4206990535 cites W2157488968 @default.
- W4206990535 cites W2169851658 @default.
- W4206990535 cites W2171675471 @default.
- W4206990535 cites W2324654311 @default.
- W4206990535 cites W2325438847 @default.
- W4206990535 cites W2325469323 @default.
- W4206990535 cites W2338949170 @default.
- W4206990535 cites W2516938563 @default.
- W4206990535 cites W2586115603 @default.
- W4206990535 cites W2586644083 @default.
- W4206990535 cites W2614464134 @default.
- W4206990535 cites W2755824317 @default.
- W4206990535 cites W2886485306 @default.
- W4206990535 cites W2931285024 @default.
- W4206990535 cites W2966565203 @default.
- W4206990535 cites W2999641182 @default.
- W4206990535 cites W3011061547 @default.
- W4206990535 cites W3025949386 @default.
- W4206990535 cites W3043321607 @default.
- W4206990535 cites W3045287622 @default.
- W4206990535 cites W3104504796 @default.
- W4206990535 cites W3105027489 @default.
- W4206990535 cites W3111429557 @default.
- W4206990535 cites W566720969 @default.
- W4206990535 doi "https://doi.org/10.1016/j.jhydrol.2022.127512" @default.
- W4206990535 hasPublicationYear "2022" @default.
- W4206990535 type Work @default.
- W4206990535 citedByCount "4" @default.
- W4206990535 countsByYear W42069905352022 @default.
- W4206990535 countsByYear W42069905352023 @default.
- W4206990535 crossrefType "journal-article" @default.
- W4206990535 hasAuthorship W4206990535A5043508651 @default.
- W4206990535 hasAuthorship W4206990535A5044799170 @default.
- W4206990535 hasAuthorship W4206990535A5058529560 @default.
- W4206990535 hasConcept C105795698 @default.
- W4206990535 hasConcept C109007969 @default.
- W4206990535 hasConcept C114793014 @default.
- W4206990535 hasConcept C119599485 @default.
- W4206990535 hasConcept C126645576 @default.
- W4206990535 hasConcept C127313418 @default.
- W4206990535 hasConcept C127413603 @default.
- W4206990535 hasConcept C152877465 @default.
- W4206990535 hasConcept C187320778 @default.
- W4206990535 hasConcept C189285262 @default.
- W4206990535 hasConcept C205649164 @default.
- W4206990535 hasConcept C33923547 @default.
- W4206990535 hasConcept C39432304 @default.
- W4206990535 hasConcept C40675005 @default.
- W4206990535 hasConcept C53739315 @default.
- W4206990535 hasConcept C58640448 @default.
- W4206990535 hasConcept C76886044 @default.
- W4206990535 hasConceptScore W4206990535C105795698 @default.
- W4206990535 hasConceptScore W4206990535C109007969 @default.
- W4206990535 hasConceptScore W4206990535C114793014 @default.
- W4206990535 hasConceptScore W4206990535C119599485 @default.
- W4206990535 hasConceptScore W4206990535C126645576 @default.
- W4206990535 hasConceptScore W4206990535C127313418 @default.
- W4206990535 hasConceptScore W4206990535C127413603 @default.
- W4206990535 hasConceptScore W4206990535C152877465 @default.
- W4206990535 hasConceptScore W4206990535C187320778 @default.
- W4206990535 hasConceptScore W4206990535C189285262 @default.
- W4206990535 hasConceptScore W4206990535C205649164 @default.