Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206993905> ?p ?o ?g. }
- W4206993905 endingPage "102" @default.
- W4206993905 startingPage "102" @default.
- W4206993905 abstract "The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses." @default.
- W4206993905 created "2022-01-26" @default.
- W4206993905 creator A5002323128 @default.
- W4206993905 creator A5005520151 @default.
- W4206993905 creator A5015034646 @default.
- W4206993905 creator A5024644806 @default.
- W4206993905 creator A5045076531 @default.
- W4206993905 creator A5052687333 @default.
- W4206993905 creator A5054264354 @default.
- W4206993905 creator A5056605266 @default.
- W4206993905 creator A5064448962 @default.
- W4206993905 date "2022-01-09" @default.
- W4206993905 modified "2023-10-18" @default.
- W4206993905 title "Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures" @default.
- W4206993905 cites W130969773 @default.
- W4206993905 cites W1606847346 @default.
- W4206993905 cites W2014683958 @default.
- W4206993905 cites W2016944307 @default.
- W4206993905 cites W2027927824 @default.
- W4206993905 cites W2028034385 @default.
- W4206993905 cites W2031618069 @default.
- W4206993905 cites W2035424729 @default.
- W4206993905 cites W2045183551 @default.
- W4206993905 cites W2059951936 @default.
- W4206993905 cites W2078015570 @default.
- W4206993905 cites W2080132175 @default.
- W4206993905 cites W2088222765 @default.
- W4206993905 cites W2111130146 @default.
- W4206993905 cites W2112340291 @default.
- W4206993905 cites W2135122778 @default.
- W4206993905 cites W2149072817 @default.
- W4206993905 cites W2157881370 @default.
- W4206993905 cites W2203714058 @default.
- W4206993905 cites W2545884554 @default.
- W4206993905 cites W2618530766 @default.
- W4206993905 cites W2768956845 @default.
- W4206993905 cites W2783481833 @default.
- W4206993905 cites W2790040984 @default.
- W4206993905 cites W2809925683 @default.
- W4206993905 cites W2883468645 @default.
- W4206993905 cites W2894895904 @default.
- W4206993905 cites W2897006264 @default.
- W4206993905 cites W2899138141 @default.
- W4206993905 cites W2917160625 @default.
- W4206993905 cites W2919115771 @default.
- W4206993905 cites W2944095229 @default.
- W4206993905 cites W2963355311 @default.
- W4206993905 cites W2970733329 @default.
- W4206993905 cites W2974734894 @default.
- W4206993905 cites W2982348184 @default.
- W4206993905 cites W2991524019 @default.
- W4206993905 cites W2992093941 @default.
- W4206993905 cites W2995523160 @default.
- W4206993905 cites W3008955082 @default.
- W4206993905 cites W3014760149 @default.
- W4206993905 cites W3023767623 @default.
- W4206993905 cites W3029978071 @default.
- W4206993905 cites W3042619474 @default.
- W4206993905 cites W3135784346 @default.
- W4206993905 cites W4233437899 @default.
- W4206993905 cites W4251356425 @default.
- W4206993905 cites W4366807449 @default.
- W4206993905 cites W3120414840 @default.
- W4206993905 doi "https://doi.org/10.3390/e24010102" @default.
- W4206993905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35052128" @default.
- W4206993905 hasPublicationYear "2022" @default.
- W4206993905 type Work @default.
- W4206993905 citedByCount "14" @default.
- W4206993905 countsByYear W42069939052022 @default.
- W4206993905 countsByYear W42069939052023 @default.
- W4206993905 crossrefType "journal-article" @default.
- W4206993905 hasAuthorship W4206993905A5002323128 @default.
- W4206993905 hasAuthorship W4206993905A5005520151 @default.
- W4206993905 hasAuthorship W4206993905A5015034646 @default.
- W4206993905 hasAuthorship W4206993905A5024644806 @default.
- W4206993905 hasAuthorship W4206993905A5045076531 @default.
- W4206993905 hasAuthorship W4206993905A5052687333 @default.
- W4206993905 hasAuthorship W4206993905A5054264354 @default.
- W4206993905 hasAuthorship W4206993905A5056605266 @default.
- W4206993905 hasAuthorship W4206993905A5064448962 @default.
- W4206993905 hasBestOaLocation W42069939051 @default.
- W4206993905 hasConcept C118552586 @default.
- W4206993905 hasConcept C12267149 @default.
- W4206993905 hasConcept C153180895 @default.
- W4206993905 hasConcept C154945302 @default.
- W4206993905 hasConcept C15744967 @default.
- W4206993905 hasConcept C160146798 @default.
- W4206993905 hasConcept C169760540 @default.
- W4206993905 hasConcept C17755696 @default.
- W4206993905 hasConcept C2778186239 @default.
- W4206993905 hasConcept C2781067378 @default.
- W4206993905 hasConcept C41008148 @default.
- W4206993905 hasConcept C522805319 @default.
- W4206993905 hasConcept C69738355 @default.
- W4206993905 hasConcept C81363708 @default.
- W4206993905 hasConceptScore W4206993905C118552586 @default.
- W4206993905 hasConceptScore W4206993905C12267149 @default.
- W4206993905 hasConceptScore W4206993905C153180895 @default.