Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206996924> ?p ?o ?g. }
- W4206996924 abstract "Modeling the direct economic losses of storm surge disasters can assess the disaster situation in a timely manner and improve the efficiency of post-disaster management in practice, which is acknowledged as one of the most significant issues in clean production. However, improving the forecasting accuracy of direct economic losses caused by storm surge disasters remains challenging, which is also a major concern in the field of disaster risk management. In particular, most of the previous studies have mainly focused on individual models, which ignored the significance of reduction and optimization. Therefore, a novel direct economic loss forecasting system for storm surge disasters is proposed in this study, which includes reduction, forecasting, and evaluation modules. In this system, a forecasting module based on an improved machine learning technique is proposed, which improves the generalization ability and robustness of the system. In addition, the key attributes and samples are selected by the proposed reduction module to further improve the forecasting performance from the two innovative perspectives. Moreover, an evaluation module is incorporated to comprehensively evaluate the superiority of the developed forecasting system. Data on the storm surge disasters from three typical provinces are utilized to conduct a case study, and the performance of the proposed forecasting system is analyzed and compared with eight comparison models. The experimental results show that the mean absolute percentage error (MAPE) predicted by the Extreme Learning Machine (ELM) model was 16.5293%, and the MAPE predicted by the proposed system was 1.0313%. Overall, the results show that the performance of the proposed forecasting system is superior compared to other models, and it is suitable for the forecasting of direct economic losses resulting from storm surge disasters." @default.
- W4206996924 created "2022-01-26" @default.
- W4206996924 creator A5013116707 @default.
- W4206996924 creator A5018616572 @default.
- W4206996924 creator A5049858459 @default.
- W4206996924 date "2022-01-25" @default.
- W4206996924 modified "2023-09-27" @default.
- W4206996924 title "Modeling of Direct Economic Losses of Storm Surge Disasters Based on a Novel Hybrid Forecasting System" @default.
- W4206996924 cites W2002323422 @default.
- W4206996924 cites W2049096196 @default.
- W4206996924 cites W2134603844 @default.
- W4206996924 cites W2570501755 @default.
- W4206996924 cites W2577898040 @default.
- W4206996924 cites W2589590528 @default.
- W4206996924 cites W2765420219 @default.
- W4206996924 cites W2767229091 @default.
- W4206996924 cites W2774610454 @default.
- W4206996924 cites W2789912344 @default.
- W4206996924 cites W2792829451 @default.
- W4206996924 cites W2797447498 @default.
- W4206996924 cites W2900946119 @default.
- W4206996924 cites W2905613296 @default.
- W4206996924 cites W2911574007 @default.
- W4206996924 cites W2914856364 @default.
- W4206996924 cites W2918257668 @default.
- W4206996924 cites W2922008526 @default.
- W4206996924 cites W2922089800 @default.
- W4206996924 cites W2945137919 @default.
- W4206996924 cites W2967764887 @default.
- W4206996924 cites W2972175048 @default.
- W4206996924 cites W2997111650 @default.
- W4206996924 cites W2998945619 @default.
- W4206996924 cites W2999660386 @default.
- W4206996924 cites W3002152246 @default.
- W4206996924 cites W3005647216 @default.
- W4206996924 cites W3008799350 @default.
- W4206996924 cites W3011104345 @default.
- W4206996924 cites W3023118770 @default.
- W4206996924 cites W3026731843 @default.
- W4206996924 cites W3048744847 @default.
- W4206996924 cites W3088887250 @default.
- W4206996924 cites W3094064422 @default.
- W4206996924 cites W3107590832 @default.
- W4206996924 cites W3125247167 @default.
- W4206996924 cites W3133775437 @default.
- W4206996924 cites W3139384290 @default.
- W4206996924 cites W3154355795 @default.
- W4206996924 cites W3156915163 @default.
- W4206996924 cites W3158738363 @default.
- W4206996924 cites W3164062803 @default.
- W4206996924 cites W3173810343 @default.
- W4206996924 cites W3198269957 @default.
- W4206996924 cites W3198531094 @default.
- W4206996924 cites W4247520165 @default.
- W4206996924 cites W4255833381 @default.
- W4206996924 doi "https://doi.org/10.3389/fmars.2021.804541" @default.
- W4206996924 hasPublicationYear "2022" @default.
- W4206996924 type Work @default.
- W4206996924 citedByCount "0" @default.
- W4206996924 crossrefType "journal-article" @default.
- W4206996924 hasAuthorship W4206996924A5013116707 @default.
- W4206996924 hasAuthorship W4206996924A5018616572 @default.
- W4206996924 hasAuthorship W4206996924A5049858459 @default.
- W4206996924 hasBestOaLocation W42069969241 @default.
- W4206996924 hasConcept C104317684 @default.
- W4206996924 hasConcept C105306849 @default.
- W4206996924 hasConcept C119857082 @default.
- W4206996924 hasConcept C127413603 @default.
- W4206996924 hasConcept C150217764 @default.
- W4206996924 hasConcept C153294291 @default.
- W4206996924 hasConcept C154108245 @default.
- W4206996924 hasConcept C162324750 @default.
- W4206996924 hasConcept C185592680 @default.
- W4206996924 hasConcept C205649164 @default.
- W4206996924 hasConcept C22818535 @default.
- W4206996924 hasConcept C41008148 @default.
- W4206996924 hasConcept C42475967 @default.
- W4206996924 hasConcept C50522688 @default.
- W4206996924 hasConcept C50644808 @default.
- W4206996924 hasConcept C55493867 @default.
- W4206996924 hasConcept C62555980 @default.
- W4206996924 hasConcept C63479239 @default.
- W4206996924 hasConceptScore W4206996924C104317684 @default.
- W4206996924 hasConceptScore W4206996924C105306849 @default.
- W4206996924 hasConceptScore W4206996924C119857082 @default.
- W4206996924 hasConceptScore W4206996924C127413603 @default.
- W4206996924 hasConceptScore W4206996924C150217764 @default.
- W4206996924 hasConceptScore W4206996924C153294291 @default.
- W4206996924 hasConceptScore W4206996924C154108245 @default.
- W4206996924 hasConceptScore W4206996924C162324750 @default.
- W4206996924 hasConceptScore W4206996924C185592680 @default.
- W4206996924 hasConceptScore W4206996924C205649164 @default.
- W4206996924 hasConceptScore W4206996924C22818535 @default.
- W4206996924 hasConceptScore W4206996924C41008148 @default.
- W4206996924 hasConceptScore W4206996924C42475967 @default.
- W4206996924 hasConceptScore W4206996924C50522688 @default.
- W4206996924 hasConceptScore W4206996924C50644808 @default.
- W4206996924 hasConceptScore W4206996924C55493867 @default.
- W4206996924 hasConceptScore W4206996924C62555980 @default.
- W4206996924 hasConceptScore W4206996924C63479239 @default.