Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207012818> ?p ?o ?g. }
- W4207012818 endingPage "257" @default.
- W4207012818 startingPage "237" @default.
- W4207012818 abstract "Abstract. Wide-swath C-band synthetic aperture radar (SAR) has been used for sea ice classification and estimates of sea ice drift and deformation since it first became widely available in the 1990s. Here, we examine the potential to distinguish surface features created by sea ice deformation using ice type classification of SAR data. Also, we investigate the cross-platform transferability between training sets derived from Sentinel-1 Extra Wide (S1 EW) and RADARSAT-2 (RS2) ScanSAR Wide A (SCWA) and fine quad-polarimetric (FQ) data, as the same radiometrically calibrated backscatter coefficients are expected from the two C-band sensors. We use a novel sea ice classification method developed based on Arctic-wide S1 EW training, which considers per-ice-type incident angle (IA) dependency of backscatter intensity. This study focuses on the region near Fram Strait north of Svalbard to utilize expert knowledge of ice conditions during the Norwegian young sea ICE (N-ICE2015) expedition. Manually drawn polygons of different ice types for S1 EW, RS2 SCWA and RS2 FQ data are used to retrain the classifier. Different training sets yield similar classification results and IA slopes, with the exception of leads with calm open water, nilas or newly formed ice (the “leads” class). This is caused by different noise floor configurations of S1 and RS2 data, which interact differently with leads, necessitating dataset-specific retraining for this class. SAR scenes are then classified based on the classifier retrained for each dataset, with the classification scheme altered to separate level from deformed ice to enable direct comparison with independently derived sea ice deformation maps. The comparisons show that the classification of C-band SAR can be used to distinguish areas of ice divergence occupied by leads, young ice and level first-year ice (LFYI). However, it has limited capacity in delineating areas of ice deformation due to ambiguities between ice types with higher backscatter intensities. This study provides reference to future studies seeking cross-platform application of training sets so they are fully utilized, and we expect further development of the classifier and the inclusion of other SAR datasets to enable image-classification-based ice deformation detection using only satellite SAR." @default.
- W4207012818 created "2022-01-26" @default.
- W4207012818 creator A5010868241 @default.
- W4207012818 creator A5034411171 @default.
- W4207012818 creator A5063090361 @default.
- W4207012818 creator A5068955785 @default.
- W4207012818 creator A5090762526 @default.
- W4207012818 date "2022-01-24" @default.
- W4207012818 modified "2023-10-14" @default.
- W4207012818 title "Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity" @default.
- W4207012818 cites W1544571225 @default.
- W4207012818 cites W1608677044 @default.
- W4207012818 cites W1649409368 @default.
- W4207012818 cites W1979981606 @default.
- W4207012818 cites W2008657843 @default.
- W4207012818 cites W2009473074 @default.
- W4207012818 cites W2011044854 @default.
- W4207012818 cites W2034751732 @default.
- W4207012818 cites W2040701163 @default.
- W4207012818 cites W2053858753 @default.
- W4207012818 cites W2059431073 @default.
- W4207012818 cites W2059978624 @default.
- W4207012818 cites W2064553474 @default.
- W4207012818 cites W2078937726 @default.
- W4207012818 cites W2093804327 @default.
- W4207012818 cites W2098454176 @default.
- W4207012818 cites W2100235001 @default.
- W4207012818 cites W2103793553 @default.
- W4207012818 cites W2112038196 @default.
- W4207012818 cites W2113557153 @default.
- W4207012818 cites W2124544126 @default.
- W4207012818 cites W2138132459 @default.
- W4207012818 cites W2140253783 @default.
- W4207012818 cites W2149997669 @default.
- W4207012818 cites W2151477007 @default.
- W4207012818 cites W2155524176 @default.
- W4207012818 cites W2169537379 @default.
- W4207012818 cites W2170536121 @default.
- W4207012818 cites W220780677 @default.
- W4207012818 cites W2269563549 @default.
- W4207012818 cites W2318041348 @default.
- W4207012818 cites W2483236932 @default.
- W4207012818 cites W2565268427 @default.
- W4207012818 cites W2573045486 @default.
- W4207012818 cites W2585085148 @default.
- W4207012818 cites W2596702660 @default.
- W4207012818 cites W2597262271 @default.
- W4207012818 cites W2617023984 @default.
- W4207012818 cites W2725897987 @default.
- W4207012818 cites W2739193580 @default.
- W4207012818 cites W2740983708 @default.
- W4207012818 cites W2753745899 @default.
- W4207012818 cites W2756997663 @default.
- W4207012818 cites W2766701031 @default.
- W4207012818 cites W2772140602 @default.
- W4207012818 cites W2779915257 @default.
- W4207012818 cites W2793179481 @default.
- W4207012818 cites W2793764174 @default.
- W4207012818 cites W2793876251 @default.
- W4207012818 cites W2794004337 @default.
- W4207012818 cites W2809279725 @default.
- W4207012818 cites W2809632273 @default.
- W4207012818 cites W2915023258 @default.
- W4207012818 cites W2929069017 @default.
- W4207012818 cites W2955208048 @default.
- W4207012818 cites W2955795928 @default.
- W4207012818 cites W2969846082 @default.
- W4207012818 cites W2975025647 @default.
- W4207012818 cites W3021046234 @default.
- W4207012818 cites W3037914990 @default.
- W4207012818 cites W3041470078 @default.
- W4207012818 cites W3063084726 @default.
- W4207012818 cites W3085035195 @default.
- W4207012818 cites W3103490405 @default.
- W4207012818 cites W3116004890 @default.
- W4207012818 cites W3126411526 @default.
- W4207012818 cites W569852707 @default.
- W4207012818 doi "https://doi.org/10.5194/tc-16-237-2022" @default.
- W4207012818 hasPublicationYear "2022" @default.
- W4207012818 type Work @default.
- W4207012818 citedByCount "1" @default.
- W4207012818 countsByYear W42070128182023 @default.
- W4207012818 crossrefType "journal-article" @default.
- W4207012818 hasAuthorship W4207012818A5010868241 @default.
- W4207012818 hasAuthorship W4207012818A5034411171 @default.
- W4207012818 hasAuthorship W4207012818A5063090361 @default.
- W4207012818 hasAuthorship W4207012818A5068955785 @default.
- W4207012818 hasAuthorship W4207012818A5090762526 @default.
- W4207012818 hasBestOaLocation W42070128181 @default.
- W4207012818 hasConcept C111368507 @default.
- W4207012818 hasConcept C127313418 @default.
- W4207012818 hasConcept C13280743 @default.
- W4207012818 hasConcept C136894858 @default.
- W4207012818 hasConcept C30354325 @default.
- W4207012818 hasConcept C41008148 @default.
- W4207012818 hasConcept C49204034 @default.
- W4207012818 hasConcept C518008717 @default.
- W4207012818 hasConcept C555944384 @default.