Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207013325> ?p ?o ?g. }
- W4207013325 endingPage "527" @default.
- W4207013325 startingPage "499" @default.
- W4207013325 abstract "Autonomous Underwater Vehicles (AUVs) are used by the scientific community for various applications, from collecting well-distributed high-quality data to mapping the seafloor or exploring unknown areas. Nonpredictable environmental conditions and sensor acquisitions make the design of AUV surveys challenging even for expert operators. Multiple attempts are required, and the collected data quality is not guaranteed: The AUV passively stores the sensors' acquisitions that are then analyzed offline after its recovery. In Forward-Looking SONAR (FLS) seabed inspections, the vehicle follows lawnmower paths designed by an expert operator that considers the sensor characteristics. The performance of FLSs is affected by several environmental conditions and possible protruding objects. This paper presents a probabilistic framework for FLS-based seabed inspections that endow the AUV with the ability to autonomously conducting the survey and ensure adequate coverage of the target area. A three-dimensional probabilistic occupancy mapping system for FLS reconstructions to update the covered area map was developed. The map is used by the Coverage Path Planning (CPP) algorithm to evaluate the visibility of the viewpoints that are generated as nodes of a random tree. The Next-Best Viewpoint (NBV) is selected as the first node in the branch expected to collect more data, and the path to reach the NBV is computed using the rapidly exploring random tree (RRT*) algorithm. The sensor-driven coverage approach is used in a receding-horizon manner. The proposed Receding-Horizon Coverage Approach was validated with simulations and real prerecorded data. Finally, the framework was used online during an experimental campaign where several FLS seabed inspections were performed." @default.
- W4207013325 created "2022-01-26" @default.
- W4207013325 creator A5011960231 @default.
- W4207013325 creator A5079170360 @default.
- W4207013325 creator A5081547496 @default.
- W4207013325 date "2022-01-20" @default.
- W4207013325 modified "2023-10-02" @default.
- W4207013325 title "Sensor‐driven autonomous underwater inspections: A receding‐horizon RRT‐based view planning solution for AUVs" @default.
- W4207013325 cites W1542612979 @default.
- W4207013325 cites W1544032329 @default.
- W4207013325 cites W1562604021 @default.
- W4207013325 cites W1602819531 @default.
- W4207013325 cites W1611476298 @default.
- W4207013325 cites W1816460154 @default.
- W4207013325 cites W1942294243 @default.
- W4207013325 cites W1970218068 @default.
- W4207013325 cites W1971086298 @default.
- W4207013325 cites W1972715357 @default.
- W4207013325 cites W1984460673 @default.
- W4207013325 cites W1996021757 @default.
- W4207013325 cites W2006213557 @default.
- W4207013325 cites W2012124957 @default.
- W4207013325 cites W2019738489 @default.
- W4207013325 cites W2021082829 @default.
- W4207013325 cites W2040872506 @default.
- W4207013325 cites W2049771613 @default.
- W4207013325 cites W2064482780 @default.
- W4207013325 cites W2071888022 @default.
- W4207013325 cites W2074467058 @default.
- W4207013325 cites W2110762409 @default.
- W4207013325 cites W2123859926 @default.
- W4207013325 cites W2131798141 @default.
- W4207013325 cites W2132990760 @default.
- W4207013325 cites W2133844819 @default.
- W4207013325 cites W2137531922 @default.
- W4207013325 cites W2154418813 @default.
- W4207013325 cites W2161160262 @default.
- W4207013325 cites W2179022541 @default.
- W4207013325 cites W2207585345 @default.
- W4207013325 cites W2220620423 @default.
- W4207013325 cites W2237571475 @default.
- W4207013325 cites W2344693513 @default.
- W4207013325 cites W2345224179 @default.
- W4207013325 cites W2402768891 @default.
- W4207013325 cites W2409887213 @default.
- W4207013325 cites W2413963660 @default.
- W4207013325 cites W2421528908 @default.
- W4207013325 cites W2480475164 @default.
- W4207013325 cites W2501556412 @default.
- W4207013325 cites W2515288524 @default.
- W4207013325 cites W2552165419 @default.
- W4207013325 cites W2563150812 @default.
- W4207013325 cites W2567069552 @default.
- W4207013325 cites W2589638263 @default.
- W4207013325 cites W2605843382 @default.
- W4207013325 cites W2726851649 @default.
- W4207013325 cites W2739036405 @default.
- W4207013325 cites W2763228906 @default.
- W4207013325 cites W2765881441 @default.
- W4207013325 cites W2793723378 @default.
- W4207013325 cites W2794321701 @default.
- W4207013325 cites W2794411572 @default.
- W4207013325 cites W2795298767 @default.
- W4207013325 cites W2806523605 @default.
- W4207013325 cites W2807434082 @default.
- W4207013325 cites W2901058014 @default.
- W4207013325 cites W2904379337 @default.
- W4207013325 cites W2910234834 @default.
- W4207013325 cites W2943083989 @default.
- W4207013325 cites W2952224371 @default.
- W4207013325 cites W2966943864 @default.
- W4207013325 cites W2971495930 @default.
- W4207013325 cites W2972571107 @default.
- W4207013325 cites W2974494712 @default.
- W4207013325 cites W2979369486 @default.
- W4207013325 cites W2995530603 @default.
- W4207013325 cites W3003384814 @default.
- W4207013325 cites W3003506236 @default.
- W4207013325 cites W3006593729 @default.
- W4207013325 cites W3007107381 @default.
- W4207013325 cites W3021548821 @default.
- W4207013325 cites W3082243195 @default.
- W4207013325 cites W3090360675 @default.
- W4207013325 cites W3093955010 @default.
- W4207013325 cites W3107587607 @default.
- W4207013325 cites W3107655300 @default.
- W4207013325 cites W3153613687 @default.
- W4207013325 cites W3214464180 @default.
- W4207013325 cites W4212863985 @default.
- W4207013325 cites W4240884136 @default.
- W4207013325 cites W4254772338 @default.
- W4207013325 doi "https://doi.org/10.1002/rob.22061" @default.
- W4207013325 hasPublicationYear "2022" @default.
- W4207013325 type Work @default.
- W4207013325 citedByCount "13" @default.
- W4207013325 countsByYear W42070133252022 @default.
- W4207013325 countsByYear W42070133252023 @default.
- W4207013325 crossrefType "journal-article" @default.