Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207014976> ?p ?o ?g. }
- W4207014976 endingPage "e29434" @default.
- W4207014976 startingPage "e29434" @default.
- W4207014976 abstract "Wearable technology has the potential to improve cardiovascular health monitoring by using machine learning. Such technology enables remote health monitoring and allows for the diagnosis and prevention of cardiovascular diseases. In addition to the detection of cardiovascular disease, it can exclude this diagnosis in symptomatic patients, thereby preventing unnecessary hospital visits. In addition, early warning systems can aid cardiologists in timely treatment and prevention.This study aims to systematically assess the literature on detecting and predicting outcomes of patients with cardiovascular diseases by using machine learning with data obtained from wearables to gain insights into the current state, challenges, and limitations of this technology.We searched PubMed, Scopus, and IEEE Xplore on September 26, 2020, with no restrictions on the publication date and by using keywords such as wearables, machine learning, and cardiovascular disease. Methodologies were categorized and analyzed according to machine learning-based technology readiness levels (TRLs), which score studies on their potential to be deployed in an operational setting from 1 to 9 (most ready).After the removal of duplicates, application of exclusion criteria, and full-text screening, 55 eligible studies were included in the analysis, covering a variety of cardiovascular diseases. We assessed the quality of the included studies and found that none of the studies were integrated into a health care system (TRL<6), prospective phase 2 and phase 3 trials were absent (TRL<7 and 8), and group cross-validation was rarely used. These issues limited these studies' ability to demonstrate the effectiveness of their methodologies. Furthermore, there seemed to be no agreement on the sample size needed to train these studies' models, the size of the observation window used to make predictions, how long participants should be observed, and the type of machine learning model that is suitable for predicting cardiovascular outcomes.Although current studies show the potential of wearables to monitor cardiovascular events, their deployment as a diagnostic or prognostic cardiovascular clinical tool is hampered by the lack of a realistic data set and proper systematic and prospective evaluation." @default.
- W4207014976 created "2022-01-26" @default.
- W4207014976 creator A5000406750 @default.
- W4207014976 creator A5001295629 @default.
- W4207014976 creator A5052699801 @default.
- W4207014976 creator A5075282021 @default.
- W4207014976 date "2022-01-19" @default.
- W4207014976 modified "2023-10-14" @default.
- W4207014976 title "Machine Learning for Cardiovascular Outcomes From Wearable Data: Systematic Review From a Technology Readiness Level Point of View" @default.
- W4207014976 cites W2073468781 @default.
- W4207014976 cites W2095409369 @default.
- W4207014976 cites W2148143831 @default.
- W4207014976 cites W2167865572 @default.
- W4207014976 cites W2284544053 @default.
- W4207014976 cites W2291961022 @default.
- W4207014976 cites W2536764488 @default.
- W4207014976 cites W2560136348 @default.
- W4207014976 cites W2560234115 @default.
- W4207014976 cites W2584430982 @default.
- W4207014976 cites W2591746411 @default.
- W4207014976 cites W2766070097 @default.
- W4207014976 cites W2783795641 @default.
- W4207014976 cites W2790444357 @default.
- W4207014976 cites W2792851582 @default.
- W4207014976 cites W2807472607 @default.
- W4207014976 cites W2810223396 @default.
- W4207014976 cites W2883553801 @default.
- W4207014976 cites W2884754815 @default.
- W4207014976 cites W2887119478 @default.
- W4207014976 cites W2887171948 @default.
- W4207014976 cites W2888673273 @default.
- W4207014976 cites W2890591602 @default.
- W4207014976 cites W2891945408 @default.
- W4207014976 cites W2900790923 @default.
- W4207014976 cites W2905321886 @default.
- W4207014976 cites W2908591466 @default.
- W4207014976 cites W2909786094 @default.
- W4207014976 cites W2914682281 @default.
- W4207014976 cites W2914902556 @default.
- W4207014976 cites W2916868127 @default.
- W4207014976 cites W2930506564 @default.
- W4207014976 cites W2942975361 @default.
- W4207014976 cites W2944352165 @default.
- W4207014976 cites W2945964456 @default.
- W4207014976 cites W2946078250 @default.
- W4207014976 cites W2949422409 @default.
- W4207014976 cites W2950848552 @default.
- W4207014976 cites W2951008626 @default.
- W4207014976 cites W2952429584 @default.
- W4207014976 cites W2954801211 @default.
- W4207014976 cites W2962511854 @default.
- W4207014976 cites W2963696043 @default.
- W4207014976 cites W2964311967 @default.
- W4207014976 cites W2971859972 @default.
- W4207014976 cites W2973179191 @default.
- W4207014976 cites W2973316003 @default.
- W4207014976 cites W2976398475 @default.
- W4207014976 cites W2985900026 @default.
- W4207014976 cites W2990225235 @default.
- W4207014976 cites W2990491261 @default.
- W4207014976 cites W2990653535 @default.
- W4207014976 cites W2990768863 @default.
- W4207014976 cites W2993062397 @default.
- W4207014976 cites W2996584493 @default.
- W4207014976 cites W2999926771 @default.
- W4207014976 cites W3000556081 @default.
- W4207014976 cites W3001733392 @default.
- W4207014976 cites W3001838300 @default.
- W4207014976 cites W3005497886 @default.
- W4207014976 cites W3007492756 @default.
- W4207014976 cites W3012100339 @default.
- W4207014976 cites W3012331434 @default.
- W4207014976 cites W3012640303 @default.
- W4207014976 cites W3012997976 @default.
- W4207014976 cites W3015222325 @default.
- W4207014976 cites W3017533639 @default.
- W4207014976 cites W3018079365 @default.
- W4207014976 cites W3025476769 @default.
- W4207014976 cites W3026483464 @default.
- W4207014976 cites W3030590214 @default.
- W4207014976 cites W3033603788 @default.
- W4207014976 cites W3037422146 @default.
- W4207014976 cites W3081864884 @default.
- W4207014976 cites W3083913352 @default.
- W4207014976 cites W3084223729 @default.
- W4207014976 cites W3092371431 @default.
- W4207014976 cites W3099916295 @default.
- W4207014976 cites W3104801087 @default.
- W4207014976 cites W3108946043 @default.
- W4207014976 cites W3112669073 @default.
- W4207014976 cites W3118615836 @default.
- W4207014976 cites W3135128169 @default.
- W4207014976 cites W3194979994 @default.
- W4207014976 cites W3198760712 @default.
- W4207014976 cites W3029466495 @default.
- W4207014976 doi "https://doi.org/10.2196/29434" @default.
- W4207014976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35044316" @default.
- W4207014976 hasPublicationYear "2022" @default.