Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207021741> ?p ?o ?g. }
- W4207021741 endingPage "106717" @default.
- W4207021741 startingPage "106717" @default.
- W4207021741 abstract "Compared with the traditional visual detection method, hyperspectral imaging enables efficient and non-destructive plant monitoring. Besides, it has great potential in plant phenotyping in response to disease and insect infections. However, most previous studies on hyperspectral imaging have focused on detecting a single disease, which can rarely discriminate between multiple co-occurring diseases and insects. In this study, three tea plant stresses with similar symptoms, including the tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda), anthracnose (Gloeosporium theae-sinesis Miyake), and sunburn (disease-like stress), were evaluated. A multi-step approach was proposed based on hyperspectral imaging and continuous wavelet analysis (CWA) to discriminate the plant stresses. The process entailed: (1) Feature extraction for detection and discrimination of tea plant stresses based on CWA; (2) Detecting abnormal areas on tea leaves via the k-means clustering and support vector machine algorithms; (3) Construction of a model for identification and discrimination of the three tea plant stresses via the random forest algorithm. The results showed that CWA could effectively identify spectral features for distinguishing the three stresses. The overall accuracy (OA) of the proposed approach reached 90.26%-90.69%, with anthracnose having the highest OA (94.12%-94.28%), followed by tea green leafhopper (93.99%-94.20%), while sunburn damage was the least (82.50%-83.91%). Therefore, hyperspectral imaging is effective for plant phenotyping after diseases and insect infections." @default.
- W4207021741 created "2022-01-26" @default.
- W4207021741 creator A5001444672 @default.
- W4207021741 creator A5006023502 @default.
- W4207021741 creator A5019634976 @default.
- W4207021741 creator A5049701324 @default.
- W4207021741 creator A5079849954 @default.
- W4207021741 date "2022-02-01" @default.
- W4207021741 modified "2023-10-13" @default.
- W4207021741 title "Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis" @default.
- W4207021741 cites W134826579 @default.
- W4207021741 cites W1966379566 @default.
- W4207021741 cites W1966971005 @default.
- W4207021741 cites W1979633670 @default.
- W4207021741 cites W1993349014 @default.
- W4207021741 cites W2001462218 @default.
- W4207021741 cites W2034139177 @default.
- W4207021741 cites W2055963101 @default.
- W4207021741 cites W2075546765 @default.
- W4207021741 cites W2076143808 @default.
- W4207021741 cites W2077439648 @default.
- W4207021741 cites W2077653178 @default.
- W4207021741 cites W2084509333 @default.
- W4207021741 cites W2086708373 @default.
- W4207021741 cites W2086970160 @default.
- W4207021741 cites W2100523100 @default.
- W4207021741 cites W2115921954 @default.
- W4207021741 cites W2130774035 @default.
- W4207021741 cites W2131864940 @default.
- W4207021741 cites W2154137957 @default.
- W4207021741 cites W2155632266 @default.
- W4207021741 cites W2162772680 @default.
- W4207021741 cites W2589020030 @default.
- W4207021741 cites W2610308012 @default.
- W4207021741 cites W2617509333 @default.
- W4207021741 cites W2743284109 @default.
- W4207021741 cites W2902190518 @default.
- W4207021741 cites W2907625092 @default.
- W4207021741 cites W2929514558 @default.
- W4207021741 cites W2930379364 @default.
- W4207021741 cites W2937444913 @default.
- W4207021741 cites W2951898785 @default.
- W4207021741 cites W2954934222 @default.
- W4207021741 cites W2965748829 @default.
- W4207021741 cites W2969545732 @default.
- W4207021741 cites W2971090818 @default.
- W4207021741 cites W2980267273 @default.
- W4207021741 cites W95773551 @default.
- W4207021741 doi "https://doi.org/10.1016/j.compag.2022.106717" @default.
- W4207021741 hasPublicationYear "2022" @default.
- W4207021741 type Work @default.
- W4207021741 citedByCount "24" @default.
- W4207021741 countsByYear W42070217412022 @default.
- W4207021741 countsByYear W42070217412023 @default.
- W4207021741 crossrefType "journal-article" @default.
- W4207021741 hasAuthorship W4207021741A5001444672 @default.
- W4207021741 hasAuthorship W4207021741A5006023502 @default.
- W4207021741 hasAuthorship W4207021741A5019634976 @default.
- W4207021741 hasAuthorship W4207021741A5049701324 @default.
- W4207021741 hasAuthorship W4207021741A5079849954 @default.
- W4207021741 hasConcept C144027150 @default.
- W4207021741 hasConcept C150903083 @default.
- W4207021741 hasConcept C153180895 @default.
- W4207021741 hasConcept C154945302 @default.
- W4207021741 hasConcept C159078339 @default.
- W4207021741 hasConcept C2778084189 @default.
- W4207021741 hasConcept C2778908745 @default.
- W4207021741 hasConcept C3019235130 @default.
- W4207021741 hasConcept C41008148 @default.
- W4207021741 hasConcept C47432892 @default.
- W4207021741 hasConcept C59822182 @default.
- W4207021741 hasConcept C86803240 @default.
- W4207021741 hasConceptScore W4207021741C144027150 @default.
- W4207021741 hasConceptScore W4207021741C150903083 @default.
- W4207021741 hasConceptScore W4207021741C153180895 @default.
- W4207021741 hasConceptScore W4207021741C154945302 @default.
- W4207021741 hasConceptScore W4207021741C159078339 @default.
- W4207021741 hasConceptScore W4207021741C2778084189 @default.
- W4207021741 hasConceptScore W4207021741C2778908745 @default.
- W4207021741 hasConceptScore W4207021741C3019235130 @default.
- W4207021741 hasConceptScore W4207021741C41008148 @default.
- W4207021741 hasConceptScore W4207021741C47432892 @default.
- W4207021741 hasConceptScore W4207021741C59822182 @default.
- W4207021741 hasConceptScore W4207021741C86803240 @default.
- W4207021741 hasLocation W42070217411 @default.
- W4207021741 hasOpenAccess W4207021741 @default.
- W4207021741 hasPrimaryLocation W42070217411 @default.
- W4207021741 hasRelatedWork W2327303563 @default.
- W4207021741 hasRelatedWork W2411582946 @default.
- W4207021741 hasRelatedWork W2441994670 @default.
- W4207021741 hasRelatedWork W2604917461 @default.
- W4207021741 hasRelatedWork W288501211 @default.
- W4207021741 hasRelatedWork W2899038843 @default.
- W4207021741 hasRelatedWork W2899307171 @default.
- W4207021741 hasRelatedWork W3088294276 @default.
- W4207021741 hasRelatedWork W3177274162 @default.
- W4207021741 hasRelatedWork W4312665802 @default.
- W4207021741 hasVolume "193" @default.